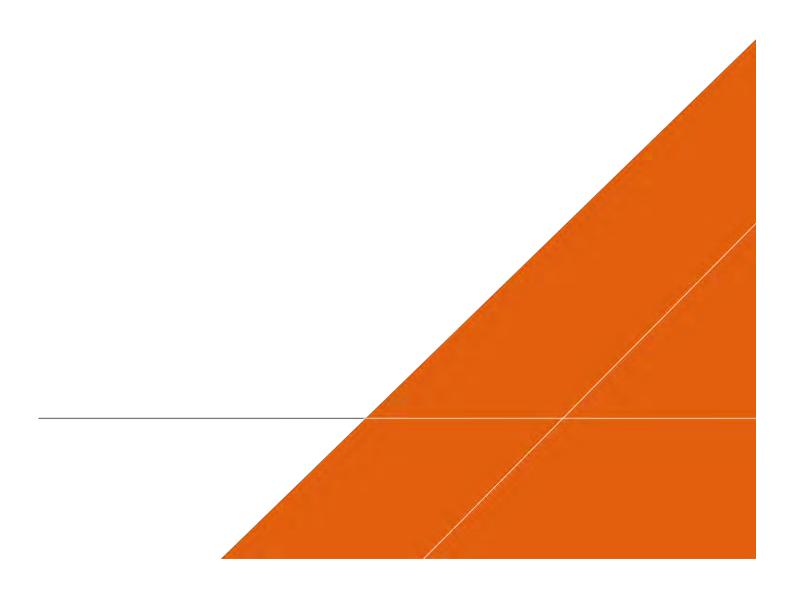
Note: Outline Planning Application (OPA) Site Boundary

The following report was produced prior to the finalisation of the application site boundary. The final application site boundary is shown on Figure 1.1 in ES Appendix 1.1. Therefore, references within the report to the site boundary do not reflect the site area and site boundary submitted with the OPA.


The reports were correct at the time of preparation, and all information within the Environmental Statement assessment reflects the latest relevant information.

OTTERPOOL PARK ENVIRONMENTAL STATEMENT

Appendix 10.1 - Ground Conditions Report

JANUARY 2019

Otterpool Park ES - Appendix 10.1 - Ground Conditions Report

Author JR

Checker

Approver GF

Report No OP_ARC_610_RP_EN_D01

Date JANUARY 2019

VERSION CONTROL

Version	Date	Author	Changes
D01	08/01/2018	JR	First Draft
D02_RB	07/12/2018	JR	Updated with EIA PM review comments
D03	15/01/2019	JR	for client/Quod review
D04	24/01/2019	JR	Legal Review
-			

This report dated 24 January 2019 has been prepared for Folkestone & Hythe District Council (the "Client") in accordance with the terms and conditions of appointment dated 03 August 2016(the "Appointment") between the Client and Arcadis Consulting (UK) Limited ("Arcadis") for the purposes specified in the Appointment. For avoidance of doubt, no other person(s) may use or rely upon this report or its contents, and Arcadis accepts no responsibility for any such use or reliance thereon by any other third party.

CONTENTS

EXE	CUTIVE SUMMARY	1
1	INTRODUCTION	4
1.1	Terms of Reference	4
1.2	Objectives	4
1.3	Scope of Work	5
1.4	Proposed Development	5
1.5	Limitations	6
2	SITE INFORMATION	8
2.1	Site Location	8
2.2	Site Description	8
2.3	Topography and Geomorphology	12
2.4	Surrounding Land Uses	12
3	GEOLOGY, HYDROGEOLOGY AND HYDROLOGY	14
3.1	Published Geology	14
3.2	Existing Ground Investigation Information	16
3.3	Hydrogeology	17
3.4	Hydrology	17
4	HISTORICAL DEVELOPMENT	18
4.1	Historical Mapping	18
4.2	Aerial Photography	20
4.3	Unexploded Ordnance (UXO)	22
5	ENVIRONMENTAL INFORMATION & REGULATORY CONSULTATIONS	26
5.1	Introduction	26
5.2	Summary of Environmental Databases	26
5.3	Direct Consultation	28
6	CONCEPTUAL SITE MODEL	29
6.1	Potential Contaminant Sources	29
6.2	Relevant Receptors	30
6.3	Potential Pathways	31

7	PRELIMINARY GROUND INVESTIGATION	33
7.1	Background and Scope	33
7.2	Ground Conditions Encountered	36
7.3	Groundwater Conditions	39
7.4	Evidence of Contamination	41
8	GEO-ENVIRONMENTAL ASSESSMENT - SOIL	42
8.1	Soil Analysis	42
8.2	Tier 1 Soil Assessment	42
9	GEO-ENVIRONMENTAL ASSESSMENT - CONTROLLED WATERS	46
9.1	Summary of Groundwater Analysis	46
9.2	Tier 1 Initial Screening Assessment	46
10	GEO-ENVIRONMENTAL ASSESSMENT - GROUND GAS	48
10.1	Gas Monitoring Summary	48
10.2	Ground Gas Risk Assessment	48
11	REGULATORY ASPECTS, WASTE AND RE-USE OF MATERIAL	50
11.1	Soil Waste Assessment (Hazardous/Non-hazardous)	50
11.2	Soil Materials Management Summary	51
12	ENGINEERING GEOLOGY	52
12.1	Potential Ground Hazards	52
12.2	Summary of Geotechnical Testing	53
12.3	Engineering Discussion	56
13	CONCLUSIONS AND RECOMMENDATIONS	61
13.1	Conclusions	61
13.2	Recommendations	62
RFF	FRENCES	64

FIGURES

Figure 1 – Proposed Otterpool Park Development	6
Figure 2 – Planning Application Site and Framework Masterplan Boundaries	9
Figure 3 – Aerial View of Otterpool Park and Walkover Survey Areas 1-3	. 10
Figure 3 – Digital Terrain Model of Otterpool Park and Surrounding Area	. 12
Figure 4 – Aerial photograph of Lympne Airport 1940 with Framework Masterplan red line boundary and current extent of industrial park [8]	. 21
Figure 5 – Aerial photograph of Lympne Airport 1960 with approximate Framework Masterplan red line boundary and current extent of industrial park [8][8]	. 21
Figure 6 – Aerial photograph of Lympne Airport 1990 with approximate masterplan red line boundary and current extent of industrial park [8]	
Figure 7 – UXO hazard level map	. 23
Figure 8 – UXO hazard level and current masterplan	. 24
Figure 9: Extract from Zetica drawing P6248-17-DWG03-D Summary Interpretation Plan	. 25
Figure 10 – Summary of SPT results	. 55
TABLES	
Table 1 Summary of Published Superficial Geology	. 14
Table 2 Summary of Published Bedrock Geology	. 14
Table 3: Summary of Historical Site Information	. 18
Table 4: Summary of Environmental Information	. 26
Table 5 Consultation Undertaken to Date	. 28
Table 6 Potential Contaminant Sources	. 29
Table 7 Summary of Exploratory Holes targeting Potential Contaminant Sources	. 34
Table 8 Summary of Strata Encountered – North*	. 37
Table 9 Summary of Strata Encountered – South**	. 37
Table 10 Recorded Groundwater Depths and Elevations	. 40
Table 11 Summary of GAC Exceedances in Soils	. 43
Table 12 Summary of WQS Exceedances in Groundwater	. 46
Table 13: Summary of Gas Monitoring Results	. 48
Table 14 Summary of Ground Hazards	. 52
Table 15 Summary of Soil Classification Test Results	. 53
Table 16 Summary of Standard Penetration Test (SPT) results	. 54
Table 17 Estimated Mean Undrained Shear Strength of Clay	. 57
Table 18 Volume Change Potential	. 59
Table 19 Concrete Assessment - Design Sulphate Class	. 60

APPENDICES

DRAWINGS

Arcadis 0001-UA008926-UP32D-01 Site Location Plan

Farrells OPM(P)1016K 17-12-18 Indicative Masterplan Phases Rev.K

Arcadis 0002-UA008926-UP32D-01 Bedrock and Superficial Geology

Arcadis 5002-UA008926-UP31-S2-02 Potentially Contaminative Land Uses

Arcadis 0003-UA008926-UP32D-01 Exploratory Hole Locations and Proposed Masterplan

Arcadis 0004-UA008926-UP32D-01 Exploratory Hole Locations and Geology

Arcadis 0005-UA008926-UP32D-01 Pollution Incidents

APPENDIX A

Arcadis Ground Investigation Factual Report, December 2017

APPENDIX B

Arcadis Ground Investigation Factual Report, November 2018

APPENDIX C

Site Walkover Survey Photographs

APPENDIX D

UXO Desk Study Report

APPENDIX E

UXO Risk Mitigation Report and UXO Survey Drawings

APPENDIX F

Summary of Soil Analysis and Screening

APPENDIX G

Summary of Groundwater Analysis and Screening

APPENDIX H

Ground Gas Monitoring Results

APPENDIX I

Waste Classification Assessment (Soils)

ABBREVIATIONS

ACEC	Aggressive Chemical Environment for Concrete	MFEM	Multi-Frequency Electromagnetic Sensor
ACM	Asbestos Containing Material	MMP	Material Management Plan
BGS	British Geological Survey	MTBE	Methyl tert-butyl ether
ВН	Borehole	NE	Natural England
BTEX	Benzene, Toluene, Ethyl-benzene, Xylene	OMC	Optimum Moisture Content
C4SL	Category 4 Screening Level	os	Ordnance Survey
CBR	California Bearing Ratio	PAH	Polycyclic Aromatic Hydrocarbons
CIEH	Chartered Institute for Environmental Health	PBA	Peter Brett Associates
CL:AIRE	Contaminated Land: Applications in Real Environments	PCB	Polychlorinated Biphenols
CoC	Contaminants of Concern	PI	Plasticity Index
CSM	Conceptual Site Model	PID	Photo-Ionisation Detector
C _u	Undrained Shear Strength	PNEC	Predicted No Effect Concentration
CWG	Criteria Working Group	RAF	Royal Air Force
DRO	Diesel Range Organics	RIBA	Royal Institute of British Architects
DWS	Drinking Water Standard	S4UL	Suitable for Use Level
EA	Environment Agency	SDC	Shepway District Council
EC	Equivalent Carbon band	SNRHW	Stable Non-Reactive Hazardous Waste
EIA	Environmental Impact Assessment	SOM	Soil Organic Matter
EOC	Explosive Ordnance Clearance	SPT	Standard Penetration Test
EOD	Explosive Ordnance Disposal	SPZ	Source Protection Zone
EQS	Environmental Quality Standard	SSSI	Site of Special Scientific Interest
ES	Environmental Statement	SUDS	Sustainable Urban Drainage Solutions.
FOC	Fraction of Organic Carbon	SVOC	Semi-Volatile Organic Compounds
GAC	Generic Assessment Criteria	TCR	Total Core Recovery
GCR	Geological Conservation Review site	TP	Trial Pit
GIR	Ground Investigation Report	TPH	Total Petroleum Hydrocarbons
GIS	Geographical Information System	UXB	Unexploded Bomb
GSV	Gas Screening Value	UXO	Unexploded Ordnance
HDP	Hand Dug Pit	VOC	Volatile Organic Compounds
HGV	Heavy Goods Vehicle	WAC	Waste Acceptance Criteria
LPG	Liquified Petroleum Gas	WQS	Water Quality Standard
LQM	Land Quality Management Ltd.	WS	Windowless Sampled borehole
m AOD	metres Above Ordnance Datum (Newlyn)	WW2	World War Two
m bgl	metres below ground level		

EXECUTIVE SUMMARY

Site Location

Scope of works

Land Use (Current and Historic)

Geology, Hydrogeology & Hydrology

Otterpool Park is a proposed garden settlement located south of the M20 between Ashford and Folkestone in the Folkestone & Hythe District of Kent. This report accompanies an outline planning application by Otterpool Park LLP (the applicant) for a new garden settlement for up to 8,500 homes (use class C2 and C3) and use class D1, D2, A1, A2, A3, A4, B1a, B1b, B2, C1 development with related highways, green and blue infrastructure (access, appearance, landscaping, layout and scale matters to be reserved). The proposed development occupies 580 ha of predominantly agricultural land, between the villages of Lympne, Newingreen, Barrow Hill, Sellindge and Westenhanger. The Otterpool Park application site ("the site") sits within a larger Framework Masterplan which proposes further expansion of the settlement to deliver 10,000 homes. The former Folkestone Racecourse sits within, and Westenhanger Castle and two industrial estates are located adjacent to, the Otterpool Park outline application site boundary.

This report provides a high-level review of the geotechnical and geo-environmental conditions at the site. The findings have identified potential development constraints and risks to inform the masterplan and can be used to refine further site investigation and development design during the detailed design stage.

A preliminary ground investigation has been carried out which comprised 82 exploratory holes. The objectives were to obtain information on infiltration rates for the outline drainage strategy (reported in Otterpool Park ES Appendix 15.1), and inspect locations with greater potential for contamination to be present.

Exploratory hole locations were selected to examine the geological formations present and assess geotechnical conditions encountered, or other ground-related observations.

Several localised, potentially contaminative, land uses were identified: Otterpool Quarry (a former ragstone quarry, later a cement manufacturer and currently a lorry park) has known hydrocarbon soil impacts. A historical landfill (likely mostly inert materials) is located north of Lympne Industrial Park (HGV fuel storage and other industrial activities). The former Lympne Airport was active from 1916 to the 1970s with aircraft maintenance and wartime bombing recorded. Newingreen Industrial Estate (fuel storage), a vehicle maintenance garage and scrap vehicle storage are present along the A20. The south-eastern main line and Westenhanger Railway Station are located adjacent to the northern site boundary. A sewage pumping station and a motocross track are also present, along with small-scale waste and fuel storage facilities at the racecourse and industrial areas.

Soil and groundwater samples were tested for contaminants potentially associated with the above sources during the recent ground investigation.

The site is situated north of the Hythe Escarpment, where the Hythe Formation (interbedded limestone and sandstone) overlies the older, less resilient Atherfield Clay and Weald Clay Formations. The bedrock strata dips slightly to the north and the younger Sandgate Formation (mudstone and siltstone) and Folkestone Formation (sandstone) overly the Hythe Formation in the northern part of the site.

Mapped superficial deposits within the site include widespread Head Deposits (up to >4.6 m thick), and local Alluvium associated with the East Stour River, which drains the area to the northeast.

Groundwater at the site is typically shallow and several springs are also present at Hythe Formation outcrops. The Hythe and Folkestone Formations are classified as Principal Aquifers by the Environment Agency, while the Sandgate Formation, Alluvium and a small proportion of the Head Deposits are classed as Secondary Aquifers. No active licenced groundwater or surface water abstractions are recorded within the site. Abstractions of <20 m³/day do not require a licence and may be present, e.g. for agricultural purposes.

The Hythe Formation has a history of quarrying in the area and the former Otterpool Quarry in the centre of the site is designated as a Geological SSSI.

Geo-environmental Analysis and Assessment

Risks to human health from contaminated soils have been assessed against Generic Assessment Criteria (GAC) for a 'residential with plant uptake' land use. This aligns with development for housing as the more sensitive end use. This receptor has been assumed across the whole site at this stage to provide a conservative assessment. A total of 78 soil samples were analysed, and the majority were below, i.e. compliant with, the GAC. Exceedances of GAC for PAH compounds were detected in TP113 at the lorry park and minor exceedances in three other locations. Lead was above the GAC at WS110 at Folkestone Racecourse and discrete asbestos fibres were detected in soils near the garage at the airport café and within the former airport.

Controlled Waters

Soil

Fourteen groundwater samples were analysed to inform current baseline quality and potential risks to Controlled Waters. Most contaminant concentrations achieved, i.e. were below, conservative Water Quality Standards (WQS) for drinking water and environmental quality. The exception being minor exceedances for some heavy metals. These exceedances are not considered significant in the context of the proposed Development.

Ground Gas

Gas monitoring was carried out at several borehole locations on three occasions including locations near the historical landfill, and the quarry backfill. Concentrations of methane (up to 0.1% v/v) and carbon dioxide (up to 4.7% v/v) and slight borehole flow were recorded. Gas screening values were calculated. Results were classed as 'Green' under the NHBC approach for low rise housing, and 'Characteristic Situation 1' under the modified Wilson and Card system. These early findings indicate the potential for ground gas generation is low and the associated hazard is low.

Soil Reuse and Management.

Soil arisings from excavations during the development should be reused on site where they are suitable for reuse. This could be achieved by a Materials Management Plan (MMP) in accordance with the CL:AIRE Definition of Waste Code of Practice.

Based on current findings, the majority of soils on site (if any were to become waste) are likely to classify as non-hazardous or inert, with potentially some hazardous material associated with the current lorry park. Topsoil from agricultural areas should be handled and stored appropriately and reused wherever possible.

Unexploded Ordnance (UXO)

UXO risks are associated with the historical RAF base. Pipe mines were laid beneath the runways, and an abandoned bomb is recorded in the northwest corner of the site. Undiscovered UXB or pipe mines would present a constraint to the development. The current masterplan includes residential housing in the north of the former airport. Significant additional investigation work will probably be required to mitigate the risk from UXO in this area.

Geotechnical Considerations Shallow foundations are expected to be a suitable option for residential and other low-rise structures of moderate loading proposed at the site. However suitable precautions should be taken with respect to the presence of medium volume change potential cohesive material. Bedrock (Hythe Formation) is present at shallow depths in the centre of the site, which may cause difficult excavation conditions, such as for service trenches and foundations.

Generally, groundwater inflows into exploratory holes were not substantial, but some groundwater control may be required generally, and perhaps more so in lower lying areas in the centre and north of the site where shallow groundwater is present.

No development-critical issues have been identified that may significantly impact the development feasibility.

Detailed ground investigation and in-situ assessment of geotechnical factors such as bearing capacity and settlement should be conducted at higher density prior to each development phase. Additional checks for chemical quality of soils and topsoil for reuse and for as yet undiscovered contamination, particularly near the historical landfill and former quarry (potential gas source), should also be included.

An MMP is recommended to manage the sustainable use of soil arisings.

A UXO risk mitigation plan should be prepared for any development in the medium and high-risk areas.

Additional assessment / investigation to inform the potential options for protecting and enhancing the geological SSSI site as part of the Development is recommended at the detailed design stage.

1 INTRODUCTION

1.1 Terms of Reference

Arcadis Consulting (UK) Limited (Arcadis) received instructions from Otterpool Park LLP (formerly Folkestone & Hythe District Council (FHDC) and Cozumel Estates) (the applicant) to undertake a preliminary ground investigation and initial assessment of ground conditions for the proposed Otterpool Park Development ("the site"). This report accompanies an outline planning application by the applicant for a new garden settlement for up to 8,500 homes (use class C2 and C3) and use class D1, D2, A1, A2, A3, A4, B1a, B1b, B2, C1 development with related highways, green and blue infrastructure (access, appearance, landscaping, layout and scale matters to be reserved), referred to as the proposed Development. The proposed Development forms part of a larger Framework Masterplan which proposes further expansion of the garden settlement to deliver 10,000 homes and associated uses.

A RIBA Stage 1 Feasibility report was commissioned by FHDC (then Shepway District Council) in 2016 [1], and concluded (on the basis of the then available information) that there were "no significant [technical] barriers to development of a garden settlement which would preclude delivering the aspirations defined by the vision, aims and principles".

The Feasibility report recommended preliminary (Stage 2) investigation works including an intrusive ground investigation to obtain baseline information on potential contamination sources and soil infiltration rates for outline drainage design.

An initial phase of Ground Investigation across the wider Framework Masterplan site was carried out by Arcadis in August 2017 and the results were described and assessed in the interim release of this report in January 2018.

OPM(P)1016KA second phase of ground investigation was undertaken by Arcadis in August/September 2018. The Phase 2 ground investigation objectives were to investigate ground conditions in additional built development areas in the south of the site and to obtain additional information on drainage characteristics for the site.

This report should be read with in conjunction with the Chapter 10 [2],) Geology, Hydrogeology and Land Quality of the Otterpool Park Environmental Statement (ES.

This report should be read in conjunction with the Phase 1 and Phase 2 Ground Investigation Factual Reports for Otterpool Park (Ref. UA008926-43-AFS-GLR-G001 and 10011914-AFS-GLR-G001) provided as Appendix A and Appendix B.

1.2 Objectives

The purpose of this report is to provide a high-level review of the engineering and geo-environmental characteristics of the ground across the Framework Masterplan area to highlight major potential constraints to the proposed masterplan. The preliminary ground investigation carried out by Arcadis had two objectives: to identify significant areas of soil or groundwater contamination, and to obtain data on soil infiltration rates to inform the outline drainage strategy (Section 7.1). The latter is reported under separate cover [3].

Early identification of ground-related risks will enable the development team to optimise the outline design for the development, avoid unexpected financial or programme impacts later in the development process arising from unforeseen ground conditions and minimise required remediation.

This report supports the Otterpool Park Environmental Statement which considers both the impacts of the outline planning application for Otterpool Park, as well as the wider Framework Masterplan.

It should be noted that this is a preliminary investigation that has utilised relatively few exploratory hole locations, that are thus widely spaced, but are considered to be appropriate for a robust assessment of ground conditions at the outline planning application stage. Further, more detailed, investigation will be required, e.g. once outline planning permission has been approved, to help inform detailed design and further understand ground and land quality conditions and variations within.

However, undertaking a basic level of investigation at this stage provides useful information for the scheme both for the outline design and cost estimation.

1.3 Scope of Work

This report presents the results of the preliminary ground investigation in terms of the geotechnical and geoenvironmental conceptual models for the masterplan phase of the development.

The scope of work has included the following tasks, which are presented in the sections listed below:

- a) Collation and review of baseline information for the site, including the geology, hydrogeology and hydrology (Section 3);
- b) A site walkover survey to identify features of geotechnical or geoenvironmental interest (Section 2.2);
- c) Identification of current and historical potentially contaminative land uses on and near to the site (Section 4);
- d) Regulatory enquires and detailed research into historical land uses including quarrying and wartime activities (Section 5);
- e) Development of an outline Conceptual Site Model (CSM) and identification of potential contaminant linkages; (Section 6);
- f) Two phases of preliminary intrusive investigation were undertaken to provide outline information on the site geology and hydrogeology, and baseline data on soil and groundwater quality and ground gas. (Section 7);
- g) Screening of soil, groundwater and ground gas data against generic quantitative screening criteria (Sections 8, 9 and 10);
- h) Preliminary waste classification of soils and recommendations for sustainable soil materials management (Section 11);
- i) Identification of potential geotechnical constraints in relation to the proposed future use of the site; (Section12); and
- j) Discussion of the resulting implications for the masterplan and recommendations for further work (Section 13).

1.4 Proposed Development

Otterpool Park is a proposed new garden settlement accommodating up to 8,500 homes (use class C2 and C3) and use class D1, D2, A1, A2, A3, A4, B1a, B1b, B2, C1 development with related highways, green and blue infrastructure (access, appearance, landscaping, layout and scale matters to be reserved).

Folkestone & Hythe District Council has set out a vision of Otterpool Park as a sustainable settlement with a mix of various residential dwellings types, employment areas, schools and local high street amenities. New transport and utility links and green infrastructure are also proposed.

This report is based on the proposed Development as represented by the planning application parameter plans for approval and Development SpecificationOPM(P)1016K which include:

- low to medium density residential housing located around Barrow Hill, Sellindge and Otterpool Lane in the west and south of the site;
- medium to high density residential housing located around the existing racecourse area and south of the A20 west of Newingreen;
- mixed light industrial/commercial development located around Westenhanger Castle in the northeast of the site;
- SUDS features such as drainage and attenuation areas located around the East Stour River north of the A20.
- 5 No. new Primary and 1 No. new Secondary Schools;

- Roads and public services associated with the above; and
- Allotments, location unconfirmed but proposed in the Feasibility Report [1].

The proposed layout is shown in Figure 1 (taken from Farrells drawing Ref. OPM(P)1016K, Rev. V 30-04-18). The final layout and details such as dwelling types (housing, apartments), private gardens, number of storeys, etc. are still to be confirmed and as such may affect the conclusions of this assessment. This report has therefore assumed a sensitive land use scenario may occur within all areas, with regards to the various ground risks considered.

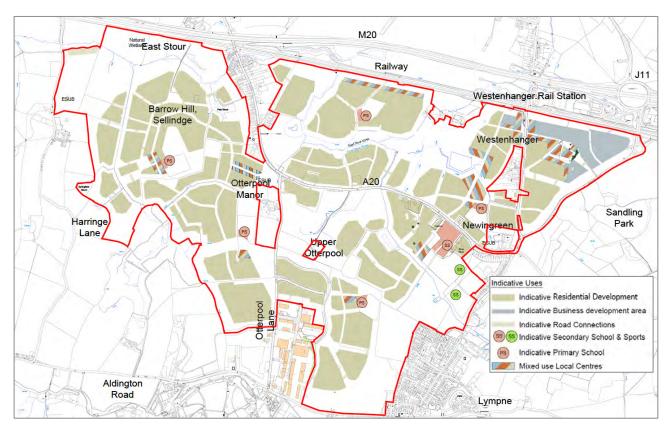


Figure 1 – Proposed Otterpool Park Development (from Drawing Ref. OPM(P)1016K, Rev. K 17-12-18)
Red line: planning application site boundary

1.5 Limitations

This report has been compiled from a number of sources, which Arcadis believes to be trustworthy. However, Arcadis is unable to guarantee the accuracy of information provided by others. The report is based on information available at the time. Consequently, there is a potential for further information to become available, which may change this report's conclusions and for which Arcadis cannot be responsible.

The approach adopted by Arcadis for the assessment of contamination at the site is based on critical evaluation of the methodologies currently available, to decide which are most applicable to the site conditions and proposed end-use. Guidance in land contamination is in a transitional state. Therefore, no responsibility can be accepted for future changes in legislation or guidance, which may affect the approach used or the findings of this report.

Arcadis do not accept liability for any use of the information presented in this report unless it is signed by the author, checker and approver and marked as final

A preliminary investigation has been carried out to help inform outline design concepts. Exploratory hole locations are widely spaced. It is not suitable for detailed design. It should be noted that ground conditions between exploratory holes may vary from those identified during this ground investigation; any design should take this into consideration. It should also be noted that groundwater levels may be subject to diurnal, tidal,

seasonal, climatic variations and those recorded in this report are dependent on the time the ground investigation was carried out and the weather before and during the investigation.

2 SITE INFORMATION

2.1 Site Location

The proposed Otterpool Park Development site is located in the west of Shepway District. It comprises a 580 ha area of land south of the M20 motorway between Ashford and Folkestone in Kent, southeast England. The red line boundary of the site (at the time of writing) has a perimeter of 16.6 km and is shown on Drawing Ref. *OPM(P)1016K*, *Rev. K 17-12-18* and Figure 3 below.

The nearest town is Hythe, located approximately 3.5 km to the east. The coastline of the English Channel is approximately 2.8 km to the southeast.

The site area is split between the TN postcode area in the north and west and the CT postcode area in the south. The approximate centre of the site is at National Grid Reference 611240, 136720 (nearest postcode is TN25 6DA).

The Site Location Plan (Drawing 0001) shows the site's location relative to surrounding settlements and major transport links.

2.2 Site Description

This section presents an overview of the planning application site (Figure 2) based on online and Ordnance Survey (OS) mapping [4], [5], [6], and a walkover survey carried out by Arcadis on 6th October 2016. Further information on the history of the site features is given in Section 4.

The wider Framework Masterplan area incorporates additional land to the north, east south and west of the site, notably including the Lympne Industrial park and the settlements of Barrowhill, Newingreen and Westenhanger (Figure 2).

2.2.1 Overview

The planning application site is an irregular shape measuring approximately 4.3 km east to west and 2.5 km north to south. The northern boundary of the site is adjacent to the railway (South-eastern Main Line), but excludes the village of Barrowhill and the area around Westenhanger Castle. The eastern boundary runs partly along the A20 in the north and Stone Street to the south. The southern boundary follows Aldington Road between Lympne village and Lympne Industrial Park, and the western boundary borders Harringe Brooks Wood and Harringe Lane.

Several settlements are adjacent to the planning application boundary. Westenhanger, including the railway station and the 14th Century Westenhanger Castle and a small number of low-density residential buildings is located in the northeast of the site. Lympne village is located adjacent to the southeast of the site. Barrow Hill, Sellindge and Newingreen are small residential settlements to the northwest and east of the site respectively.

Lympne Industrial Park (of approximately 30 ha in area) is located adjacent to the south of the site (further details in Section 4.1) and Newingreen Industrial Estate (approximately 0.8 ha in area) is located outside of the site boundary in the west of the site.

The north of the site includes the former Folkestone Racecourse. Several farms are located within the site including Somerfield Court Farm, Hillhurst Farm and Newingreen Farm. Otterpool Manor Farm is excluded from the site boundary in an inlier in the centre of the site. Other inliers excluded from the planning application site are Upper Otterpool and the houses in Westenhanger. Much of the site is currently in agricultural use for arable crops and livestock.

Major roads crossing the site include the A20 Ashford Road between Newingreen and Barrowhill, the B2067 Otterpool Lane, and Stone Street past Westenhanger [6] (Figure 2 and Drawing 0001).

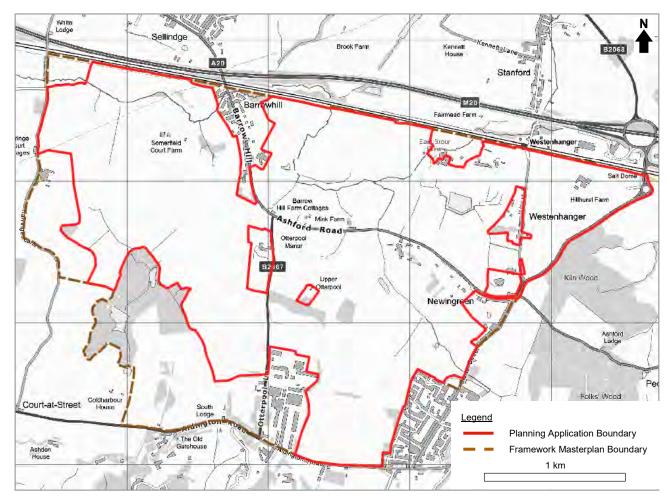


Figure 2 - Planning Application Site and Framework Masterplan Boundaries

2.2.2 Geo-Environmental Walkover Survey

A site walkover survey was carried out by an Arcadis Environmental Consultant on 6th October 2016. This survey covered the area outlined in purple in Figure 3. The findings of the survey are summarised as areas 1 to 3, shown in Figure 3 below. Relevant features are shown on Drawing 5002 and photographs are presented in Appendix C.

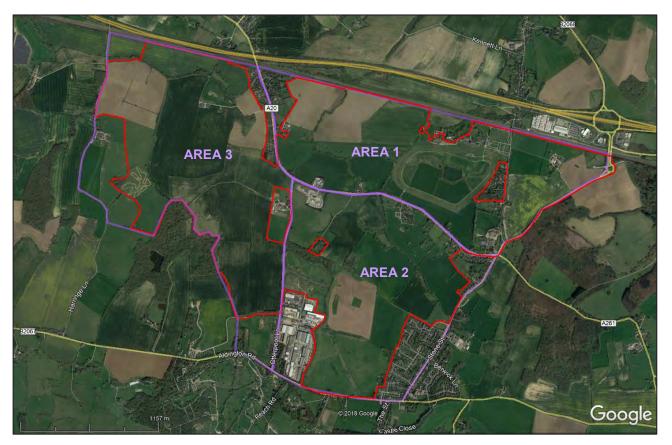


Figure 3 – Aerial View of Otterpool Park and Walkover Survey Areas 1-3 (Modified from Google Earth Pro®, image date 04/09/2017)

Area 1: Folkestone Race Course and Westenhanger Castle

- Folkestone Racecourse is currently disused. Recent uses include the annual War and Peace Revival Show between 2013 and 2016 [7]. The site contact stated that racecourse was used as a decoy airport during WW2 (RAF Westenhanger) and the racetrack used to be irrigated via a ring pipe around the course which is now disused.
- The walkover survey covered whole of racecourse and castle grounds. The racecourse comprised a
 turfed former horseracing track, former stable buildings, grandstand and ancillary buildings. A large
 central pond receives surface water from the racecourse. No visible indications of poor water quality were
 observed in any watercourse.
- Overhead electrical cable & transformers were noted around the stable buildings.
- 2 No. plastic fuel tanks, 1 No. metal gas cylinder tank, and 1No. electrical substation were located between the grandstand and the stables. A waste/bulk materials storage area was adjacent with two U-shaped wooden retaining walls and hardstanding in poor condition. No indications of any leaks/spills were seen.
- Westenhanger Castle comprises the castle building, a barn and several smaller buildings. It is now used as a conference/events centre. No significant features were seen in this area.
- A pumping station is marked on the OS map. A concrete plinth with a pipe possibly associated with the
 pumping station was observed west of the track, apparently backfilled with rubble. An abandoned car was
 also observed in this area.
- Areas of damp/waterlogged ground were noted to the north of the racecourse straight.
- A small vehicle repair yard (Arena Autos) was located north of the Airport Café in the southwest of Area
 The hardstanding was generally of poor condition where present. Possible scrap vehicle storage at
 Mink Farm to the east of Arena Autos was also observed.

- A small industrial estate (Newingreen) (current use unknown) was visited in the southeast of Area 1. An above ground storage tank (likely fuel) was observed to the west of the main building.
- An above ground LPG tank was observed at Crosskeys in Newingreen on the corner of Ashford Road and Stone Street.

Area 2: Lympne Industrial Park, former workings, and former RAF base (Lympne Airport)

- Lympne Industrial Park. Operational businesses were observed to include:
 - Volvo truck and bus garage (MOT/VOSA tests),
 - Sico Europe (4 No. large outside gas storage tanks),
 - Coolfruit (refrigerated warehousing and shipping),
 - Truck wash and refuelling centre (DERV storage tanks and pumps, truck wash-down area, hardstanding in good condition, drainage unknown),
 - Steel storage/fabrication businesses,
 - Other haulage and warehouse enterprises,
 - Skips, an electrical substation, and 2 No. external gas storage tanks were seen in the southwest corner of the industrial estate. Hardstanding was in a moderately good condition, with no visible evidence of leaks or spillage,
 - The industrial park was bordered in the east by large (>2 m high) soil bunds.
- Unused land to the north of Lympne Industrial Park an access road from Otterpool Lane appeared to be maintained but the area to south of the road shows existing buildings may have been demolished, and the area to the north appeared undeveloped (historical landfill Section 5.2). There were 2 No. large stockpiles of soil to the north and south of the road.
- Residential streets of Lympne village in southeast were observed from a vehicle. A small electrical substation was present. The village of Newingreen in the northeast of the area was also visited, a possible above ground LPG fuel storage tank was visible from the road.
- A former quarry (Otterpool Quarry) is in the northwest of Area 2. Part of this was grassed (SSSI area, see Section 3.1.1) and the part next to the A20 is used as a lorry park. A couple of temporary cabins were present. No hardstanding was present, and evidence of fuel and oil spills was observed on the ground surface. Some small stockpiles of waste hardcore, soil and other materials were seen in the northwest of this area.
- A former RAF base (RAF Lympne) is located on land now occupied by Lympne Industrial Park and the area of grassland/green space to the east.
 - The area to the east of the industrial park was mostly mown grass with some areas of trees alongside the former runways.
 - Concrete hardstanding associated with the former taxiway and runway was visible, broken and scattered in places.
 - Several large bunds up to 3 or 4 m high were located along the east edge of the industrial park.
 - An overgrown area in the east of the airport contained disused hardstanding and former building footings (location of former rifle range, se Section 4.1).

Area 3: West

- Derelict single storey brick buildings were observed west of the B2067 opposite the industrial park, associated with the former airport (Section 4). Debris and rubbish were seen in the buildings, including a ruined truck.
- An off-road bike (motocross) race track was located in the west of the site.
- Gas storage tanks were observed outside Harringe Court off Harringe Lane to the west of the site.

2.3 Topography and Geomorphology

The site is at an elevation of 106 m AOD at its highest point on the south boundary, and slopes down to an elevation of 65 m AOD in the northwest, and 75 m AOD in the northeast corner. The average gradient over the majority of the site is 1 in 68 (0.015) sloping down towards the north. The topography within the site is generally subtle and dominated by the East Stour River in the north, which drains the site to the northwest (Figure 4). Areas of elevated terrain are shown in the south, at Westenhanger in the east and Somerfield Court Farm in the west.

The site is situated on the crest of the Greensand Ridge (Hythe Escarpment). This escarpment runs along part of the southern site boundary above Romney Marsh, and formed the original coastline before c.1,500 AD. The ridge is formed where the Hythe Formation overlies the less resistant Atherfield and Weald Clay Formations. These weaker materials are prone to instability and landslip; mass movement deposits are shown on the geological map (Drawing 0002). The crest of the slope is adjacent to the site boundary in the southwest and approximately 340 m from the site boundary in the southwest.

The wider area slopes down to the north as part of the northeast facing dip slope of the Lower Greensand Group, within the Miocene-age Wealden Anticline. To the north is the Vale of Holmesdale which rises up into the North Downs, approximately 2.3 km from the site.

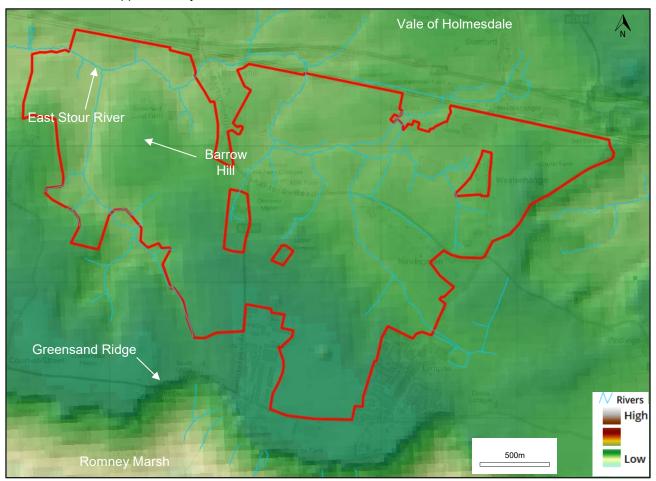


Figure 4 – Digital Terrain Model of Otterpool Park and Surrounding Area (Contains British Geological Survey materials © NERC 2017)

2.4 Surrounding Land Uses

Current land use within 1 km surrounding the site is described clockwise from the north based on OS mapping [6], online sources [5], [8], and the site walkover (Section 2.2.2). All distances are approximate to the red line boundary in Drawing 5002.

North

- The village of Sellindge is located 250 m to the north of the site, the land uses in this area are
 predominantly low-density residential and agricultural. The village of Barrowhill is adjacent to the north of
 the site.
- The South-Eastern Main Line railway forms the northern boundary of the site. This stretch of electrified running line is on embankment with road underbridges at Harringe Lane and Barrowhill and overbridges at Westenhanger and the A20. Three stream culverts also run under the railway along the site boundary.
- Beyond the railway and roughly parallel is the M20 motorway; Junction 11 is located 250 m to the northwest on large slip embankments. The Stop24 Junction 11 Motorway Services (opened 2007) are located 65 m to the north. The services comprise a petrol filling station, car and lorry parks and retail units
- Land used as a highways depot is located 100 m northeast of the site, various maps indicate that road salt is stored here,
- High voltage electricity lines run on metal pylons for 1.2 km across the northwest corner of the site.

East

- The land to the east is dominated by agricultural fields and areas of woodland including Sandling Park and Kiln Wood. The nearest residential properties are in Lympne village adjacent to the site and in Sandling 950 m to the east comprising predominantly low-rise housing.
- Berwick Manor Farm and the Saxon Shore Way footpath are located around Lympne village to the southeast of the site. A primary school is 40 m southeast of the site.

South

- The area to the south of the site comprises sporadic residential houses and fields. Lympne Castle and its
 grounds are located south of Lympne village. Lympne Place (care home) is located 290 m to the south,
 and part of the Port Lympne Zoo Park is adjacent to the site beyond the B2067/Adlington Road in the
 southwest.
- The ground slopes steeply down to the south along the Hythe Escarpment; the slope crest is between 340m south of the site boundary in the southeast and adjacent to the site boundary in the southwest.

West

- The land to the west of Otterpool Park is predominantly arable fields with some small areas of woodland.
- A couple of small ponds and a spring are shown in Harringe Brook Woods immediately west of the site. Several other streams rise on the opposite side of the hill from the site and flow westwards.

3 GEOLOGY, HYDROGEOLOGY AND HYDROLOGY

3.1 Published Geology

The bedrock underlying the site, as shown on the geological map [9], comprises several units of the Lower Greensand Group. In descending stratigraphical order, and hence increasing age, these are: the Folkestone Formation, Sandgate Formation, Hythe Formation and Atherfield Clay Formation. Underlying these is the Weald Clay of the Wealden Group. The bedrock strata at the site dip gently northwards as part of the regional east-west trending anticlinal structure.

Table 1 and Table 2 summarise the geological units at the site and their published generic descriptions [10], [11].

Table 1 Summary of Published Superficial Geology

Period - Age	Strata	Generic Description	Extents
Quaternary	Alluvium	Clay, Silt, Sand and Gravel Normally soft to firm consolidated, compressible silty clay, but can contain layers of silt, sand, peat and basal gravel. A stronger, desiccated surface zone may be present.	Follows the course of the East Stour River and its tributaries in the north and east of the site, (outcrop 5% of site area).
Quaternary	Head Deposits	Clay and Silt. Poorly sorted and poorly stratified detrital material formed by subaerial slope processes (solifluction and/or hillwash and soil creep) in layers and fans. (Hillhurst Farm (northeast corner of site) only - Clay, Silt, Sand and Gravel Named 'Head Brickearth' on the 1991 BGS 1:50,000 geological map	Present mainly in the East Stour River valley between Barrowhill, and Newingreen. Smaller deposits are located north of Lympne Industrial Park and north of Harrinage Brooks Wood, (outcrop 32% of site area).

Table 2 Summary of Published Bedrock Geology

Period - Age	Strata	Generic Description	Extent
Cretaceous - Aptian	Folkestone Formation	Sandstone Medium- and coarse-grained, well-sorted cross-bedded sands and weakly cemented sandstones. Conformable lower contact with the silty clay or clayey silt of the Marehill Clay Member (Sandgate Formation).	Occurs in northeast corner of site only (outcrop 7% of site area)
Cretaceous - Aptian	Sandgate Formation	Sandstone, Siltstone and Mudstone Fine sands, silts and silty clays, commonly glauconitic and locally ferruginous or calcareous. Some soft sandstones. Reaches 50-100m thickness in West	North and east of site plus outliers at Lympne Industrial Park and north of Otterpool Quarry (outcrop 29% of site area)

Period - Age	Strata	Generic Description	Extent
		Sussex. Unconformable lower boundary with the Hythe Formation.	
Cretaceous - Aptian	Hythe Formation	Interbedded Sandstone and Limestone Alternating sandy limestones ("Ragstone") and (subequal or subordinate) glauconitic sandy mudstones ("Hassock"). Conformable indistinct lower boundary with the Atherfield Clay Formation.	Underlying the above sequence and outcropping in the south and west of the site. (outcrop 53% of site area)
Cretaceous - Aptian	Atherfield Clay Formation	Mudstone and siltstone Massive yellowing brown to grey sandy mudstone, with an important phosphatic pebble bed with vertebrate bones, gritty sandstone or very shelly sandy mudstone with glauconite, at the base. Disconformable lower contact with Weald Clay Formation.	Outcrops in the valley north of Harringe Brooks Woods in the west of the site (outcrop 8% of site area)
Cretaceous - Hauterivian	Weald Clay Formation	Mudstone Dark grey thinly-bedded shales and mudstones with subordinate siltstones, fine- to medium-grained sandstones, including calcareous sandstone, shelly and clay ironstones.	Forms the base of the valley north of Harringe Brooks Woods in the west of the site (outcrop 2% of outcrop area)

There are two inferred faults located on site. The first fault is located approximately 800 m inside the site's western boundary, is approximately 1 km long, is trending north to south and the downthrow is to east, bringing the Weald Clay Formation adjacent to the Atherfield Clay Formation. The second fault is located on the eastern boundary of the site, is approximately 700 m long, is trending north to south and the downthrow is to the west, between the Folkestone and the Sandgate Formations.

The BGS records mass movement deposits (landslide) on the south-facing scarp slope of the Hythe escarpment to the south of the site.

3.1.1 Otterpool Quarry Geological SSSI

Otterpool Quarry, located in the centre of the proposed Otterpool Park site, is a former ragstone quarry active from prior to 1938 to sometime between 1970 and 1980. Evidence from historical mapping indicates that it comprised several pits, some of which are now partially backfilled.

The quarry is located in the Hythe Formation and the targeted mineral resource was Kentish Ragstone, 'rag' being a common term for low quality building stone. The ragstone often occurs in bands 15 to 60 cm thick [12], interbedded with the weak glauconitic calcareous sandstone hassock. Ragstone is present in some older buildings in Lympne and Westenhanger, although the quality of the stone from Otterpool Quarry may only have been sufficient for aggregates ('roadstone') [13].

The main areas of quarrying were the land now occupied by the lorry park (quarried 1932 to 1968) and the land between this and Upper Otterpool to the south (quarried from 1971).

The latter area is now designated as a Site of Special Scientific Interest (SSSI) for its geological interest. It is also a Geological Conservation Review (GCR) site. The site was designated as a SSSI in 1984 due to the significant exposures of the contact between the Hythe Formation and the overlying Sandgate Formation.

The last condition review, in 2012, reported that the site was in favourable condition. The site is currently grassed with some short trees along the former quarry edge and is used to graze sheep. It is regulated by Natural England who publish a list of operations likely to damage the special interest of the site. These include most types of construction and excavation activities. Any proposal that includes the operations on the list must be approved by Natural England, and this therefore imposes limits on the development in this location.

Further discussions regarding the SSSI are being sought with Natural England. This is outside the scope of this report and will be detailed separately.

3.2 Existing Ground Investigation Information

SLR (2008) Otterpool Quarry, Nr Hythe, Kent, Contamination Assessment [14]

A contamination assessment was prepared in 2008 for a planning application for a proposed materials recycling facility and anaerobic digestion plant in the current lorry park site. The report included results of groundwater and gas monitoring in this area and a reassessment of existing soil analysis data.

Relevant points are summarised below:

- The site was used for manufacture of cement and asphalt and vehicle maintenance. This was demolished in 2005.
- Above and below ground storage tanks were believed to have been located in the area of the bitumen
 and cement batching plant, as well as other below ground structures. The tanks were used for
 hydrocarbon storage and sump collection of run-off.
- A 2005 investigation found hydrocarbon contamination in the area of the former weighbridge and plant area together with impacts to shallow groundwater.
- Resting groundwater levels (in 2008) were within the Hythe Formation and within quarry backfill. Groundwater flow direction was tentatively given as northwards.
- One borehole recorded methane concentrations >1 % and four boreholes recorded carbon dioxide > 1.5%. Maximum borehole gas flow was 0.3 l/h.
- Risks to human health and controlled waters in the context of the proposed development were considered
 to be 'low' and no specific remediation was recommended beyond removal of buried tanks and obviously
 contaminated soils.

PBA (2008) Link Park, Lympne, Kent, Report on Hydrogeological Assessment [15]

PBA carried out a ground investigation and hydrogeological report for Phides Estates (Overseas) Ltd. in 2008 for the 'Link Park' proposed development. This comprised development for commercial/light industrial use of the former airport to the east of the Lympne Industrial Park. The report was prepared to discharge planning conditions related to concerns regarding the effect of the development on the springs in the Lympne Escarpment SSSI (250 m to the south of the Otterpool Park site).

The objectives of the report included characterising the hydrogeological and hydrological regime at the former airport and the escarpment to the south, in order to determine the potential hydrological and contamination impacts of the proposed development on the escarpment springs forming the Lympne Escarpment SSSI.

The report concluded that the groundwater in the Hythe Formation flows northwards, except for in wetter periods where there is a southward flow component towards the escarpment to the south, from a divide line approximately 370 m north of Aldington Road.

3.3 Hydrogeology

The Hythe Formation and Folkestone Formations are shown on Environment Agency (EA) mapping as Principal Aquifers. These are rocks that have high intergranular and/or fracture permeability and may support water supply and/or river base flow on a strategic scale.

The Sandgate Formation lying between the above two formations is classed as a Secondary (A) Aquifer by the EA. These are permeable layers capable of supporting water supplies at a local rather than strategic scale, and in some cases forming an important source of base flow to rivers.

The Alluvium is also a Secondary (A) Aquifer.

The Head Deposits within the site are mostly classed as unproductive strata, having low permeability that is likely to have negligible significance for water supply or river base flow. The Head Deposits at Hillhurst Farm in the northeast of the site are shown as a Secondary (Undifferentiated) Aquifer, probably due to their coarser composition (sand and gravel) as mapped by the BGS. Where present, the more impermeable layers will provide some protection to the underlying aquifers from contamination. Previous investigation has indicated infiltration rates ranging between 1 x 10^{-6} and 4.5×10^{-7} m/s [15].

There are no groundwater Source Protection Zones (SPZ) within 1 km of the site boundary. No abstraction or discharge consents for groundwater are recorded on site.

Groundwater flow within the Hythe Formation is usually through joints and fractures in the weathered limestone layers, with some limited matrix flow through the sand layers, depending on the proportion of clay or silt [16].

Downward percolating groundwater is retarded by the lower permeability of the underlying Atherfield Clay and is thus expected to flow northwards with the gentle dip of the clay strata, to emerge at springs feeding the East Stour River. Nearer the Hythe escarpment in the south, the groundwater will flow southwards to emerge at or below the contact between the Hythe and Atherfield Clay Formations sometimes to form springs in this area. The objective of the PBA report (Section 3.2) was to locate the groundwater divide in the south of the Otterpool Park site.

Groundwater in the superficial deposits is anticipated to be generally limited to the Alluvium around the streams and rivers.

Groundwater is anticipated to be at a relatively shallow depth in much of the site, as evidenced by the springs shown on OS maps at Otterpool Quarry and Newingreen Farm.

3.4 Hydrology

The site is located on moderately high ground at the head of the catchment of the East Stour River, which drains the wider area at the top of the escarpment and flows to the northwest, joining the Great Stour River at Ashford approximately 9.3km from the site.

The major surface water features within the site are the tributaries of the East Stour River running from Newingreen in the east down past the racecourse and Barrowhill and out of the northwest corner of the site. Another tributary drains Harringe Brooks Wood to the west of the site toward the same direction, following the line of the inferred fault.

Several ponds are present in the northern half of the site, the largest of which are in the centre of the racecourse and at Benham Water Farm (both shown on fine-grained Head Deposits).

As noted above the Lympne Escarpment SSSI is designated for its ecology, which is in part dependent on the springs that emerge at the top of the Atherfield Clay. Based on the PBA 2008 findings [15], the Otterpool Park development is unlikely to affect the hydrology of these springs, being north of the inferred location of the watershed line

A licenced surface water abstraction point is recorded west of the pond in the centre of Folkestone Racecourse. This is believed to have been for irrigation of the racecourse and is no longer in use. There are three discharge consents to surface waters shown on the site (Section 5).

4 HISTORICAL DEVELOPMENT

4.1 Historical Mapping

The historical development of the site and the surrounding area has been reviewed from historical OS maps, historical aerial photos, and other sources (e.g. Google Earth). The purpose is not to give a comprehensive overview, but to summarise features relevant to this assessment.

Potentially contaminative land uses and other features related to ground conditions within the site boundary and within 500m are summarised in Table 3. More significant features are noted up to 1 km, depending on the geological and hydrogeological setting and the distance over which significant effects can reasonably have the potential to occur.

Table 3: Summary of Historical Site Information

Historical Map	On site	Off site within 500m
1876-1877 1:10,560 scale	The site comprises fields, woods and scattered farm buildings. Wells are shown east and north of Newingreen. Various springs shown across the site. 'Tin Chimney Farm' is shown west of the Roman Road south of Westenhanger.	The South-Eastern Railway is shown in its current alignment along the northern site boundary with some lengths on embankment or in cutting. Westenhanger Station is located adjacent to the site northeast of the current racecourse. Westenhanger Castle and the East Stour tributary are also shown.
		A brick and tile works with a kiln is shown at Westenhanger immediately north of the railway.
1871-1883 1:2,500	A small pit, possible sand and gravel extraction, is shown in the northwest of the site approximately 470m west of Barrowhill.	No significant changes.
1898-1899 1:10,560 scale	A small quarry at Upper Otterpool is shown to the east of the access road from Ashford Road (not the main quarry area).	A quarry at Shepway Cross is shown 250m southeast of the site. Evidence of ground workings or pits at the brick works.
1898 1:2,500	The small pit west of Barrowhill has been filled.	No significant changes.
1907 1:2,500	Folkestone Race Course is shown with the Grandstand and race track in their current positions.	No significant changes.
	A small extraction pit is shown along Stone Street in Lympne	
1908 1:10560	No significant changes.	'Kiln Wood' adjacent to site east of Newingreen. Shepway Cross quarry shown enlarged

Historical Map	On site	Off site within 500m
		A tank (probably water storage) is shown at Danehust (90m southwest of corner of site)
1931 1:10,560 (partial coverage)	A tank is shown at Little Sandling in the northeast of the site.	No significant changes.
1933-1938 1:2,500	A 'miniature range' is shown east of the airport adjacent to the residential development at Lympne. The small pit in Lympne is backfilled and houses	No significant changes.
	are built over it.	Three large hanger buildings are present adjacent to the south of the site in the area of the current industrial estate.
1938-1951 1:10,560	The main quarry at Otterpool Manor is shown (in the current SSSI area)	Tanks and filter beds are shown at the sewage treatments works at Sandling Park – approximately 400m east of the site.
		The industrial buildings at the current day 'Newingreen industrial Estate' are shown.
1939 1:10,560	Lympne Airport is shown around the three hanger buildings. A water tank, various lights are shown in the area and the numerous smaller buildings in the area of the current industrial park. No paved runways are shown. A small sand or gravel extraction pit is shown in	Shepway Cross Quarry is larger.
	Lympne to the east of the airport.	
1961 10,000	Lympne airport appears with a different building layout with the three main hangers no longer present. The airport boundary has been moved northwards. A few buildings are west of Otterpool Lane.	The brick and tile works have been replaced by several long buildings labelled 'works'.
	Three buildings to the southwest of Westenhanger Station are no longer present.	
1970-1974	A pond, weighbridge and conveyor are shown in Otterpool Quarry.	
	A refuse tip is shown 200m east of Upper Otterpool, possibly associated with the nearby quarry but may also have been used for disposal of other wastes.	A small refuse tip is shown 90m
1:10,000	The 'miniature range' is shown as disused.	northwest of the site (on current line of M20 motorway).
	A filling station is shown north of the quarry on Ashford Road.	
	A small 'works' and a builder's yard are shown in Lympne near Berwick Lodge.	

Historical Map	On site	Off site within 500m
1973-1978 1:10,000	The layout of Lympne Airport (labelled Ashford Airport) has changed. The main runway is shown orientated NW-SE and the taxiway at right angles to the west. Works are shown in the area of the current industrial estate and a pumping station is opposite off Otterpool Lane. The Otterpool Quarry is shown enlarged to its maximum extent and several small buildings are shown in the centre.	An electrical substation is shown 450m southeast of the site near Danehill. Engineering Works are shown at Coldharbour 600m east of the site. The quarry at Shepway Cross appear to have been restored to ground level with tracks and rough ground.
1989-1990 1:10,000	Overhead electricity lines run parallel to the railway and southwest to Harringe Court in the northwest of the site. A pumping station (sewage) is shown to the east of the circular race track at Folkestone Racecourse. The pond in the centre of the course is also now shown. Ashford Airport is still labelled but the buildings have been redeveloped into approximately the current layout of Lympne Industrial Park.	An electrical switching station is shown 80m west of the site. The M20 is shown north of the railway with the junction to the northeast on large embankments and a depot is shown 60m northeast of the site.
1986-1991 1:10,000 (partial coverage)	No significant changes	No significant changes

4.2 Aerial Photography

Historic England

Several aerial photographs are available from Historic England [17] which show Lympne Airport in 1929 and 1931. At least ten large hanger structures are located along Aldington Road in the southeast corner of the airport site, and three large hangers are present in the current Lympne Industrial Park area.

None of the main hangers are visible on photographs dated 1940 [8] which may indicate the site was redeveloped at this time or may reflect bomb damage or censorship (

Figure 6). The huts to the east of Otterpool Lane (currently derelict, Section 2.2.2) are shown in aerial photographs from 1940 to 1990, some having been demolished over time. Paved runways are not shown until 1990 (Figure 7) when they appear in their current (partly demolished) layout.

Figure 5 – Aerial photograph of Lympne Airport 1940 with Framework Masterplan red line boundary and current extent of industrial park [8]

Figure 6 – Aerial photograph of Lympne Airport 1960 with approximate Framework Masterplan red line boundary and current extent of industrial park [8]

Figure 7 – Aerial photograph of Lympne Airport 1990 with approximate masterplan red line boundary and current extent of industrial park [8]

4.3 Unexploded Ordnance (UXO)

4.3.1 UXO Desk Study

Lympne Airport is known to have been used as an RAF base during WW2. As such there is a high potential for Unexploded Ordnance (UXO) hazards in this area. A specialist subconsultant, Zetica Ltd, was commissioned by Arcadis to carry out a UXO desk study and risk assessment for Otterpool Park. Full details are contained in the Zetica desk study report [18] and the main findings are summarised briefly below.

- Records indicate that over 500 No. high explosive bombs were dropped on the south of the site around RAF Lympne in WW2. Therefore, this part of the site is assigned a high UXO hazard level (H1) and the area around it a moderate hazard level (area M1 in Figure 8).
- An abandoned bomb is potentially located on the northwest corner of the site and is therefore assigned a high hazard level (area H2 in Figure 8).
- Pipe mines are known to have been laid under the runways at RAF Lympne to destroy the airport in the
 event of invasion. A clearance certificate was issued in 1946, however, further pipe mines were
 discovered in the 1950s and 1960s, indicating that the clearance was incomplete. A 2002 letter from an
 Explosive Ordnance Disposal (EOD) engineer indicated that there was a high possibility of uncleared pipe
 mines and recommended full clearance prior to development works This area (H3) has therefore been
 given a high hazard level.
- No records of UXO were found for the rest of the site, which is given a low hazard level.

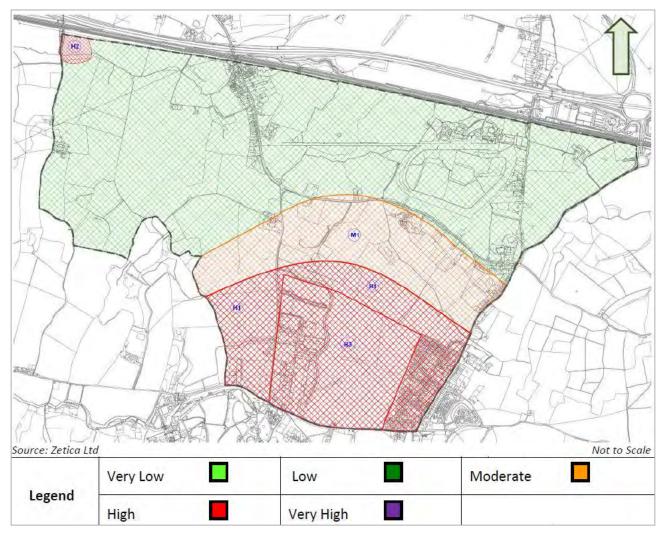


Figure 8 – UXO hazard level map (extract from Zetica UXO desk study and risk assessment report [18])

It is noted that the current masterplan includes some development within the high-risk areas including those where pipe mines may be present (Figure 9). It is likely that UXO clearance measures including intrusive and non-intrusive surveys will be required prior to development in these areas.

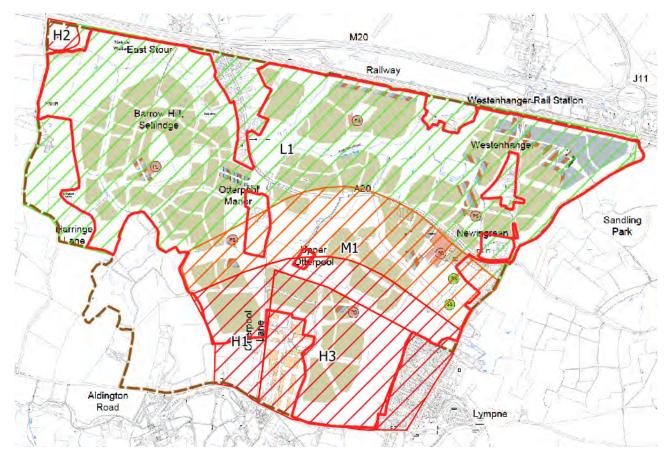


Figure 9 – UXO hazard level and current masterplan

Previous redevelopments of former military air bases have occasionally encountered radiological soil contamination, from the use of radium in luminescence dials, e.g. for flight instruments. These are generally associated with former burning or waste pits, or aircraft crash sites. No evidence of such contamination has been found at the site, based on desk study information and the preliminary ground investigation, but if any ashy fill material is encountered during further investigations or the development should be assessed for the presence of radiological contamination.

Further details on the history of the site in relation to the UXO risks are given in the UXO desk study report [18] in Appendix D.

4.3.2 UXO Geophysical Surveys and Risk Mitigation

During Phase 2 of the preliminary ground investigation, Zetica carried out active UXO avoidance measures for the exploratory holes in the area of the former airport. The objective was to safeguard the ground investigation against Unexploded Bombs (UXB) and pipe mine hazards and obtain additional information on potential UXO locations. The surveys comprised:

- Initial non-intrusive geophysical survey using a towed rig combing a surface magnetometer with a multifrequency electromagnetic sensor (MFEM) in a 50x50m area around each exploratory hole position in high hazard areas to identify potential shallow buried UXO;
- Downhole magnetometer for boreholes in high hazard areas (WS201-203 and BH201-204) between 2 m and 6 m depth; and,
- Explosive Ordnance Clearance (EOC) engineer watching brief during excavation of 14 No. trial pits.
- Additional findings of the UXO surveys are summarised below. Reference should be made to the Zetica Risk Mitigation Report [19] in Appendix E for the full findings.

- 249 No. isolated metallic anomalies were identified, whilst the majority are likely to be other metal items, the potential for them to be UXB could not be discounted;
- 38 No. linear features were identified which could not be discounted as potential pipe mines (red features in Figure 10);
- The non-intrusive survey also detected other buried features including utility services, demolition arisings, airport infrastructure, archaeology, areas of possible buried waste and other buried obstructions as shown on P6248-17-DWG03-D Summary Interpretation Plan (Appendix E);
- Several areas of dense magnetic anomalies were detected, possibility indicating areas of buried waste disposal. Three of these were investigated with trial pitting in Phase 2 (Table 7);
- Phase 2 exploratory holes were moved a minimum of 20 m from potential pipe mines; and,
- No magnetic anomalies indicative of potential UXO were detected with the down-hole magnetometer during drilling of the window samples and boreholes.

Figure 10: Extract from Zetica drawing P6248-17-DWG03-D Summary Interpretation Plan (Appendix E)

The results of the UXO desk study and risk mitigation reports may be useful when assessing the risk to the proposed garden town development(s) from UXO-related hazards. The information on other buried features can also be used to better inform future ground investigations or development layouts, where significant obstructions can be either investigated early-on or avoided.

5 ENVIRONMENTAL INFORMATION & REGULATORY CONSULTATIONS

5.1 Introduction

Environmental information for the site and the surrounding area was obtained in the form of GIS data from Landmark Information Group Ltd. The data has been reviewed to provide information for the site, where relevant in the context of the site and the objectives of this report.

The dataset includes statutory data as provided by the EA, as well as Natural England and Local Authorities. The dataset is produced by querying the database to a defined distance from the site boundary.

5.2 Summary of Environmental Databases

A summary of Environmental Information is given in Table 4 below.

Table 4: Summary of Environmental Information

Туре	Within site boundary	Within 500m of site boundary
	Petrol storage facility – (Auto	Lympne Industrial Park (non-retail HGV)
Fuel Station Entries		Crosskeys LPG Service Station (LPG) (Obsolete), Newingreen
ruei Station Entries	repair at Area Autos by airport cafe	Shell M20 Channel Gateway Motorway Service Area
		Sellindge Service Station (Obsolete)
		59 entries (15 active) at Lympne Industrial Park including freight handling, printers, vehicle repairs, and food manufacturers.
Contemporary Trade Directory	23 further entries at Otterpool Manor, Newingreen, and Westenhanger.	2 entries at the M20 service area – petrol filling station and vehicle breakdown and recovery
Entries		8 entries in Sellindge to the northwest – includes engineering services, vehicle repair and dairy.
		4 entries in Lympne to the southeast including cleaning services and engineering.
		6 No. located in Lympne and Lympne Industrial Park.
Electrical substations	1No. located within the former racecourse	3 No. east and west of the site along B2067 and to the northwest in Sellindge
Tanks	None	5 No. to the south of the site south of B2067, 1No. north of the railway near Westenhanger

Туре	Within site boundary	Within 500m of site boundary
IPPC	None	1No Biodiesel manufacturer at Harringe Court Cottage
LAPPC	Otterpool Quarry (ceased) Lafarge Aggregates crushing of inert materials.	M20 service area (petrol filling station) 4No. in Lympne Industrial Park including vehicle respraying and general coating processes.
Pollution Incidents	Newingreen – Minor incident, fire at Royal Oak Public House, release of fire water/foam to drain (1998)	Lympne Industrial Park, Significant incident, failure of above ground plastic tank release of phosphoric acid (1999).
		Significant impact to water (east of Lympne village) (180m east of site)
		Danehurst wood Minor Incident Agricultural (Slurry/Animal Waste) Pollutants (1995) (350m west of site)
		Barrowhill – minor incident Construction / Demolition Material: Inert Street Works Waste (1999)
BGS Recorded Mineral Sites	Otterpool Quarry – Ceased. Cretaceous sandstone/limestone. Hythe Formation. Opencast	Shipway Cross (east of Lympne Village) Ceased. Cretaceous sandstone/limestone. Hythe Formation. Opencast (now infilled, see landfill details).
		Westenhanger Tile and Brickworks – Ceased. Quaternary Clay and Shale. Head Deposits. Opencast
Quarrying not recorded elsewhere	Small sand and gravel pit (1939) NW Lympne Village	None
Radon	Lower Radon Potential (less than 1% of homes are estimated to be at or above the Action Level)	
Landfill	Lympne Industrial Park (north) Keedale Ltd, Licence cancelled, 75,000-250,000 tonnes per year. (First waste input 1992) 'included inert waste'	'Quarry Field' (located east of Lympne village) 520 m from site. Last waste input 1962. Included inert and household waste. (former Shipway Cross Quarry).
Discharge Consents – surface waters	P02136 located at the lorry park, Tarmac Ltd. Surrendered in 2013. Sewage discharge (final/treated effluent) to River Stour.	4 discharge consents to surface waters are recorded within 500m north of the site. These are either private sewage discharges or associated with construction sites and therefore likely to be small scale or temporary discharges.
	P20116 located west at Barrow Hill Farm Cottages. Dassie Property Investments Ltd, issued 2004. Sewage discharge	

Туре	Within site boundary	Within 500m of site boundary
	(final/treated effluent) to River Stour.	
	P02441 located in northeast corner of site. Weaver Hotels (Kent) Ltd. Issued 1989. Lapsed. Other matter, to freshwater river.	
Discharge Consents – into land	None	P06988 located in Lympne Industrial Park. Spicers Estates Ltd. issued 2012. Trade effluent- site drainage into soakaway.

5.3 Direct Consultation

Table 5 summarises the direct consultation undertaken to date with the relevant statutory bodies and the main issues arising.

Table 5 Consultation Undertaken to Date

Consultee	Contact (Date)	Summary of Issues Raised/Agreed
Shepway District Council (SDC)		The EIA should include contaminated land implications from Westernhanger train station; Ashford Lane quarry (i.e. Otterpool Quarry Geological SSSI)/ lorry park) and former Lympne Airport.
	Wai Tse, Environmental Protection Officer, Environmental	The Shell petrol filling station located at stop 24 Services to the northeast of the site has underground fuel storage tanks and Part B permit (vapour recovery).
	Health. (19 December 2016)	No environmental nuisance issues were recorded.
	(19 December 2016)	There is a bunded diesel above ground storage tank at the racecourse. No further details or leakages have been recorded. The rest of the racecourse had LPG but this has been decommissioned.
Environment Agency (EA) Kent and South London	Lucy Payne, Customers and Engagement officer. (7 December 2016)	The EA provided further environmental desk based information on licenced abstractions and pollution incidents. The data supports that reviewed earlier and is summarised in Section 5.2 above. Pollution incidents are shown in Drawing 0005.
Natural England (NE)	Julia Coneybeer, Sustainable Development Sussex and Kent. (9 May 2017 (site meeting), 17 May 2016 (letter from NE))	In summary, Natural England state 'Otterpool Quarry is located within the centre of the proposed Otterpool Park garden town site. Its geological interest and open space mean it could form a key asset and even focal point of the garden town's Green Infrastructure (GI) strategy, with the benefit of improved access for the local community, an opportunity for education and recreation, and enhancement of the geological exposure itself to improve its use as a national scientific resource. The SSSI should be protected in its entirety, and integrated into the development of the garden town in a way which realises the best of these benefits.'

6 CONCEPTUAL SITE MODEL

As part of the development of a Conceptual Site Model consistent with the principles of CLR 11 [20], potential contaminant sources, pathways and receptors which may form part of an active contaminant linkage have been identified from the desk study and site walkover information presented above.

6.1 Potential Contaminant Sources

Potential contaminant sources have been identified associated with the historical land uses identified in Section 4 and environmental records in Section 5. Features are shown on Drawing 5002 and summarised in Table 6.

Potential Contaminants of Concern (CoC) have been identified for each source based on current guidance [21] and generic knowledge of the source type. It is not a comprehensive list of all contaminants that could be present at the site but has informed the chemical analysis undertaken as part of the recent ground investigation.

Table 6 Potential Contaminant Sources

Potentially Contaminative Land Use	Description	Potential CoC					
Westenhanger train station and railway line (off site)	Present from before 1876 to present day. Line is currently electrified by 3rd rail. Adjacent to the northern site boundary but hydraulically downgradient of the site.	Heavy metals, sulphates, asbestos, Polycyclic Aromatic Hydrocarbons (PAH), chlorinated hydrocarbons, PCBs, herbicides.					
2. Otterpool quarry (ragstone quarry, cement &asphalt works, lorry park)	Potential sources include quarry backfill, refuse tip (1970), demolition of quarry or cement works buildings, known underground tanks may still be in situ, lorry fuel and oil spillages.	Heavy metals, sulphates, petroleum hydrocarbons, PAH, asbestos, ground gases.					
3. Former spoil heap/refuse tip	Former spoil heap/refuse tip shown on historical maps 1971 to 1978. No details of waste deposits are available, but it may be associated with the spoil from Otterpool Quarry or redevelopment of the airport.	Heavy metals, petroleum hydrocarbons, PAH, asbestos, ground gases, cyanides, petroleum hydrocarbons, PCBs, AFFF/PFAS, asbestos. UXO and radiological hazards may also be present.					
Landfill site north of Lympne Industrial Park	The landfill composition is currently unknown but likely to be of limited degradation potential based on the available information and lack of a permit or leachate and gas control measures.	Heavy metals, asbestos, ground gases					
5. Soil bunds north and east of Lympne Industrial Park and on former airport	The bunds are assumed to be formed of Made Ground and evidence from aerial images suggests that they formed around DATE during the works associated with the Link Park Development reported by PBA (Section 3.2).	Heavy metals, asbestos, ground gases					
Lympne Industrial Park	HGV fuel storage and distribution, vehicle maintenance, truck wash, steel engineering works, electrical substation, LPG storage	Heavy metals, cyanides, sulphates, petroleum hydrocarbons, asbestos.					
7. Newingreen Industrial Estate	An above ground fuel storage tank was observed during the site walkover. Trade directory entries	Petroleum hydrocarbons, asbestos.					

Potentially Contaminative Land Use	Description	Potential CoC
	(inactive) include road haulage and logistics businesses.	
8. Former Lympne Airport	Active from 1916 to the 1970s. Aircraft storage and maintenance areas were mostly under Lympne Industrial Park. Records of bombing and aircraft crashes.	Heavy metals, cyanides, petroleum hydrocarbons, PCBs, AFFF/PFAS, asbestos. UXO and radiological hazards may also be present.
9. Former filling station, current Arena Autos garage	Filling station shown on 1970 historical map, now a small vehicle repair shop, scrap vehicle storage at Mink Farm.	Heavy metals, cyanides, petroleum hydrocarbons, volatile hydrocarbons, asbestos
10. Pumping Station	Sewage pumping station currently run by Southern Water. Recorded pollution incidents in 2011 and 2015 relating to sewage overflow (minor impact to land and water).	Heavy metals, cyanides, petroleum hydrocarbons, ammoniacal nitrogen, asbestos, ground gases.
11. Folkestone Racecourse waste and fuel storage and electrical supplies	Includes above ground bunded fuel tanks, LPG tank, electrical substation, pole mounted transformers, waste storage area (Section 2.2.2).	Petroleum hydrocarbons, PAH, PCB.
12. Motocross track	Racing only, no known maintenance or fuelling facilities. Potential for fuel spillages.	Petroleum hydrocarbons
13. Former rifle range	Rife range shown on historical maps circa. 1930s to 1970.	Heavy metals (especially lead), asbestos. UXO hazards may also be present.

The site covers a large area and other potential small point sources and diffuse sources (current and historical) are likely to associated with agricultural and industrial activities, including but not limited to, fuel and oil storage, crop spraying, soakaways and septic tanks, and small areas of informal burning and waste disposal.

Other potential sources identified in Sections 4 and 5 are considered unlikely to impact the proposed development and are not considered further. This is because an active contaminant linkage is considered unlikely due to the age and/or size of the source, distance from the proposed development, and/or be unlikely to affect the receptors due to being hydraulically downgradient (e.g. Westenhanger Station) or separated by impermeable strata.

6.2 Relevant Receptors

Potential contamination receptors associated with the proposed development as shown in the masterplan are identified below. There is public access across much of the site at present. Certain areas within the site boundary will maintain their current land use under the proposals, thus existing site users have also been considered as potential receptors of contamination.

This assessment does not consider risk to neighbouring land and occupants, or construction, groundworks and maintenance workers for buildings and utilities.

Contamination risks to construction workers are not appraised by chronic (long-term) exposure human health risk assessments. Site specific risk assessment and appropriate health and safety practices to adequately mitigate the potential risks to construction workers are recommended for any future works. Works should be

conducted in accordance with the Health and Safety Executive publication entitled "Protection of Workers and the General Public during the Development of Contaminated Land", 1991 [22], the CDM Regulations (2015) [23] and any other relevant guidance.

Human Health

- On site residents low density housing with private gardens
- On site residents high density housing
- Employees at proposed and existing commercial/industrial units
- School teachers and students
- Recreational space users
- Allotment holders

Controlled Waters

- Principal Aquifer Hythe Formation
- Principal Aquifer Folkestone Formation
- Secondary (A) Aguifer Sandgate Formation
- Secondary (A) Aquifer Alluvium
- Secondary (Undifferentiated) Aquifer Head Deposits (northeast corner only)
- Springs within the site and Lympne Escarpment SSSI to the south.
- Field drains, ponds, streams and tributaries of the East Stour River
- East Stour River and subsequent watercourses.

Built Environment

- Existing and proposed buildings and foundations
- · Existing and proposed subsurface utilities

6.3 Potential Pathways

Potential pathways of any contamination from the above sources to the identified receptors on the site are identified below:

Human Health

- Direct dermal contact by humans with contaminated soil and/or groundwater;
- Ingestion of contaminated soil and/or groundwater by humans;
- Outdoor or indoor inhalation of gas and volatile organic compounds;
- Uptake of soil and/or groundwater contamination by crops and ingestion by humans (private gardens only)
- · Ingestion or inhalation of airborne dust;

Controlled Waters

- · Leaching of contaminants from soil into groundwater;
- Lateral migration of impacts within groundwater on site;
- · Lateral migration of impacts within groundwater off site;
- Groundwater migration to provide base flow to surface waters;
- Lateral/ horizontal movement of non-aqueous phase contaminants through the soil pores,

Built Environment

• Ingress into underground structures.

A contamination risk is only present where a source – pathway – receptor linkage is active. The list of higher likelihood potential sources, pathways and receptors was used to target the preliminary ground investigation described below.

7 PRELIMINARY GROUND INVESTIGATION

7.1 Background and Scope

To address the potentially significant risks to the masterplan and areas of uncertainty identified in the Stage 1 Feasibility Report [1], a preliminary ground investigation was carried out in two phases.

- Phase 1 in August 2017
- Phase 2 in August/September 2018

The ground investigation had two principal objectives:

- 1) Identify whether significant areas of soil or groundwater contamination were associated with the higher potential historic land uses, that, if present, may affect the proposed development and/or require significant remediation; and
- 2) Obtain preliminary data on geotechnical characteristics and soil infiltration rates to inform the outline drainage strategy.

Objective 1 is the subject of this report. Data from exploratory holes undertaken for Objective 2 are summarised in this report but reference should be made to the Water Cycle Study Report [24] for detailed interpretation of infiltration results.

In addition, the investigation provided preliminary information on the overall geology and hydrogeology of the site to help inform a preliminary ground model that should be further developed at later stages of the design.

The investigation will also provide quantitative baseline data on soil and groundwater quality for inclusion in the EIA.

7.1.1 Phase 1 August 2017

The scope of the Phase 1 ground investigation comprised:

Exploratory holes:

- 5No. rotary cored boreholes up to 10 m bgl with 50mm standpipe screening the bedrock geology to determine strata depths and thickness and monitor groundwater levels.
- 12No. machine dug trial pits up to 2.8 m bgl to enable BRE365 soakaway tests in near-surface soils for infiltration data:
- 12No. windowless sampled boreholes up to 5 m bgl with 8No. gas and groundwater monitoring standpipes to identify contaminated soils and groundwaters and ground gases;
- 3No. hand dug pits to 1.2 m bgl to identify contaminated soils at the motocross track;
- 1No. machine dug trial pit to 3.8 m bgl to identify contaminated soils and subsurface obstructions at the lorry park.

Testing:

- · Soakaway testing of shallow soils and deep borehole infiltration testing to obtain infiltration rates;
- PID field screening for Volatile Organic Compounds (VOC);
- Standard Penetration Testing (SPT) to determine ground density;
- Geotechnical laboratory testing of soil samples;
- · Geo-environmental laboratory testing of soil and groundwater samples; and
- 3No. return monitoring visits to monitoring groundwater levels and ground gases.

The Phase 1 site works were carried out between 14th and 25th August 2017. Return monitoring was conducted in three weekly visits between the 1st and the 15th September 2017.

7.1.2 Phase 2 August/September 2018

The scope of the Phase 2 ground investigation comprised:

Exploratory holes:

- 8No. rotary cored boreholes up to 10 m bgl with 50mm standpipe to determine strata depths and thickness and monitor groundwater levels.
- 17No. machine dug trial pits up to 2.7 m bgl to enable BRE365 soakaway tests in near-surface soils for infiltration data;
- 8No. machine dug trial pits up to 3.4 m bgl to investigate areas of potential waste deposits, contaminated soils and subsurface obstructions.
- 3No. windowless sampled boreholes up to 5 m bgl with 3No. gas and groundwater monitoring standpipes to identify contaminated soils, groundwater and ground gases;
- 1No. hand dug pit to 1.0 m bgl to investigate potential contamination and subsurface obstructions at the former rifle range.

Testing:

- Soakaway testing of shallow soils and deep borehole infiltration testing to obtain infiltration rates;
- PID field screening for Volatile Organic Compounds (VOC);
- Standard Penetration Testing (SPT) to determine ground density;
- Geotechnical laboratory testing of soil samples;
- · Geo-environmental laboratory testing of soil and groundwater samples; and
- 3No. return monitoring visits to monitoring groundwater levels and ground gases.

The Phase 2 site works were carried out between 15th August and 6th September 2018. Return monitoring was conducted in three weekly visits between the 19th September and the 11th October 2018.

The results of the infiltration testing and subsequent outcomes for the outline drainage strategy are reported elsewhere [3] [24]. This report presents the results of the preliminary ground investigation in terms of the geotechnical and geo-environmental conceptual models for the masterplan phase of the development.

7.1.3 Exploratory Hole Summary

A summary of the exploratory holes targeting potential contaminant sources (Ground Investigation Objective 1) is given in Table 7. Due to the nature of the development and on the understanding that most of the potential contaminant sources are to remain in their current use and are outside of the proposed redevelopment area, most of the boreholes were targeted at the contaminant pathway where the potential contamination source is outside the development area.

Table 7 Summary of Exploratory Holes targeting Potential Contaminant Sources

Location ID	Final Depth (m bgl)	Installation screening	Potential Contamination Source (row no. from Table 6)
WS101	3.0	None	Lympne Industrial Park (6)
WS102A WS102B	0.3	None None	Lympne Industrial Park Landfill (4)
WS103	5.0	Head Deposits	Lympne Industrial Park Landfill (4)
WS104A WS104B WS104C	0.3 0.15 4.0	None None Head Deposits	Former Otterpool quarry / former cement manufacturer / current lorry park (2)

Location ID	Final Depth (m bgl)	Installation screening	Potential Contamination Source (row no. from Table 6)
WS105	2.85	Head Deposits	Vehicle repair yard (Arena Autos) (9)
WS106	3.0	Head Deposits	Mink Farm (scrap vehicles) (9)
WS107	3.0	Head Deposits	Sewage pumping station (10)
WS108	2.8	Head Deposits	Racecourse (fuel storage, substation and waste storage area) (11)
WS109	3.0	None	Roads and car parks at Newingreen (7)
WS110	3.0	None	Racecourse (fuel storage, substation and waste storage area) (11)
WS111	0.6	None	Newingreen Industrial Estate and above ground storage tank (7)
WS112	3.5	Head Deposits	Lympne Industrial Park Landfill (4)
TP113	3.8	None	Former Otterpool quarry / former cement manufacturer / current lorry park (2)
HD101	1.2	None	
HD102	1.2	None	Motocross racing track (12)
HD103	1.2	None	
BH201	5	Head Deposits/Hythe Formation	Lympne Industrial Park Landfill (4)
BH202	10.5	Hythe Formation	Lympne Industrial Park Landfill (4)
BH203	10.5	Head Deposits /Hythe Formation	Former spoil heap/refuse tip shown on historical maps 1971 to 1978 (3)
TP201	3.4	None	Lympne Industrial Park Landfill and Zetica dense ferrous objects anomaly Z62 (4)
TP202	2.6	None	Lympne Industrial Park Landfill and Zetica dense ferrous objects anomaly Z29 (4)
TP203	1.3	None	
TP204	1.9	None	Stockpile/bund material located east of Lympne Industrial Park (5)
TP205	1.2	None	
TP206	0.7	None	Former spoil heap shown on historical maps 1971 to 1978 (3)
TP208	2.6	None	
TP209	2.35	None	Former Lympne Airport (8)
TP210	2.5	None	

Location ID	Final Depth (m bgl)	Installation screening	Potential Contamination Source (row no. from Table 6)
TP211	2.05	None	
TP223	2.6	None	
TP226	0.4	None	
TP227	2.3	None	Stockpile/bund material located in centre of former airport (5)
TP228	1.7	None	Former airport - possible Made Ground at Zetica anomaly Z26 (8)
WS201	3.5	Head Deposits /Hythe Formation	
WS202	5.0	Head Deposits	Lympne Industrial Park (off-site) (7)
WS203	3.0	Head Deposits	
HD201	1.0	None	Former rifle range (13)

The majority of the windowless sampled boreholes refused before the target depth of 5 m bgl. WS102A and WS102B both refused on rockhead at 0.3 m and 0.2 m bgl respectively. WS104A and WS104B refused in shallow Made Ground and were replaced by WS104C 70 m north within the lorry park. WS201 and WS203 refused at 3.5 and 3.0 m bgl while WS202 reached the target depth of 5.0 m bgl. The presence of Head Deposits in WS201 to WS202 indicates that they extend further south than suggested by the geological map.

The thickness of Made Ground was not sufficient for installation of standpipes screening this material, and therefore all the standpipes screen natural soils.

Further details on the methodology and the full results of the ground investigation, including exploratory hole engineering logs, in-situ tests, geotechnical and geo-environmental laboratory test results, and monitoring data are presented in the Phase 1 Ground Investigation Report [25] and Phase 2 Ground Investigation Report [26].

Exploratory hole locations are shown in Drawing 0003.

7.2 Ground Conditions Encountered

7.2.1 Strata Summary

A summary of the locations, thicknesses and composition of the strata encountered during the recent ground investigations is presented below. Exploratory hole logs are included in the factual reports [25] [26].

Table 8 and Table 9 summarise the strata encountered in the north and south of the site respectively; defined as roughly north and south of the A20. Bedrock at the site dips shallowly down to the north and therefore the surfaces of bedrock strata are generally at a lower elevation in the north of the site compared to the south. "Not proven" in brackets means that the whole formation thickness was not proven.

Table 8 Summary of Strata Encountered – North*

Strata Encountered	Thickness (m)	Depth to top of strata (m bgl)	Elevation of top of strata (m AOD)
Topsoil	0.2 – 0.5	0.0	57.9 – 84.3
Made Ground	0.1 – 0.6	0.0 - 0.35	58.0 - 82.2
Alluvium	1.1 – 3.5	0.2 – 0.5	57.6 – 70.1
Head Deposits	0.6 – 4.6	0.2 – 2.0	58.3 – 81.1
Folkestone Formation	Up to 1.2 (not proven)	1.2 – 1.3	75.6 – 80.5
Sandgate Formation	Up to 6.5 (not proven)	0.3 – 4.6	60.6 - 84.0
Hythe Formation	Up to 7.5 (not proven)	2.3 – 7.1	64.0 - 67.8
Atherfield Clay Formation	Up to 2.3 (not proven)	0.2 – 1.3	57.3 – 63.8
Weald Clay Formation	Up to 6.7 (not proven)	3.8	54.1

^{*}North of Ashford Road: BH102, BH103, BH105, TP101, TP102, TP103, TP105, TP106, WS105, WS106, WS107, WS108, WS110, WS111, TP213, TP214, TP215, TP217, TP218, TP219, TP220, BH206, BH207, BH208, BH209

Table 9 Summary of Strata Encountered – South**

Strata Encountered	Thickness (m)	Depth to top of strata (m bgl)	Elevation of top of strata (m AOD)			
Topsoil	0.1 – 0.6	0.0	65.2 – 106.4			
Made Ground	0.1 – 3.1	0.0 - 0.5	80.3 – 106.6			
Alluvium	0.5	0.4	72.6			
Head Deposits	0.25 – 4.7	0.1 – 1.2	65.0 – 106.3			
Folkestone Formation	Not encountered					
Sandgate Formation	2.0	4.0	97.2			
Hythe Formation	Up to 9.9 (not proven)	0.2 - 6.0	85.3 – 106.1			
Atherfield Clay Formation	Up to 3.2 (not proven)	6.8	87.8			
Weald Clay Formation	Not encountered					

^{**}South of Ashford Road (not including trial pits in above-ground bunds): BH101, BH104, HD101, HD102, HD103, TP104, TP107, TP108, TP109, TP110, TP111, TP111A, TP112, TP113, WS101, WS102A, WS102B, WS103, WS104A, WS104B, WS104C, WS109, WS112, TP201, TP202, TP206, TP208, TP209, TP210, TP211, TP221, TP222, TP223, TP226, TP228, BH201, BH202, BH203, BH204, HD201, WS201, WS202, WS203

Descriptions of the materials encountered in the 82 No. exploratory holes are summarised in the sections below. Results of in-situ testing in each stratum are presented in Section 12.2. Exploratory hole locations are shown relative to the geological units on the site in Drawing 0004.

7.2.2 Made Ground / Topsoil

Topsoil was encountered in 63 exploratory holes up to 0.6m thick. Made Ground was encountered in 24 of the 82 No. exploratory holes, associated with areas of previous development or filling. Locations included the lorry park/former quarry (TP113, WS104(A-C)), the road off the A20 roundabout (BH105, TP103), at Newingreen (WS111, TP109) and areas surrounding the former airport and current Lympne Industrial Park entrance (WS101, TP201, TP202, BH202, BH203, BH204). The base depth of the Made Ground was recorded between 0.15 m (WS104B) and 3.1 m bgl (TP113) and was generally of very limited thickness across the site.

Various lithologies were recorded including gravelly clay, sandy silt and gravel.

Anthropogenic materials logged included concrete, charcoal, plastic (TP109, TP204), metal (TP202, TP204), slag, wood, and brick. A hydrocarbon odour was noted in TP113 between 0.0 and 0.4 m bgl. Other than those observations, no grossly contaminated or highly putrescible materials were observed in the Made Ground.

7.2.3 Alluvium

Alluvium was encountered in six of the exploratory holes in the centre of the site near to the East River Stour and its tributaries. Thicknesses between 0.5 m and 3.5 m were proved, comprising mainly very soft to soft grey and orangish brown clay with minor amounts of sand and gravel of limestone and sandstone with some flint.

7.2.4 Head Deposits

Head Deposits were encountered in 51 of the 72 exploratory holes across the site. Head Deposits are formed due to weathering and slope processes such as solifluction. Due to the mixing effect of these processes the material is often highly variable. Parent materials at the site are likely to be the Lower Greensand formations or the younger Gault Clay and chalk of the White Chalk Subgroup, which would have overlain the site in the geological past but have now been removed by erosion.

The lithology was predominantly silty or sandy clay with some clayey sand and gravel. No clear pattern in principal grain size was apparent in the distribution of the Head Deposits across the site. The clay was generally described as soft to firm and brown or brownish grey, sometimes mottled orange. Pockets of black, orange or white fine sand (up to 20 mm) were encountered in TP108 at 1.3 m, TP107 at 0.5 m, and TP104 at 1.4 m bgl. Secondary constituents were fine to coarse sand and/or subrounded to angular gravel of limestone, sandstone and flint.

Where Head Deposits were recorded as coarse-grained materials (sand or gravel), they were generally medium dense, greenish or orangish brown fine to medium (occasionally coarse) sand. TP112 encountered clayey sandy gravel of limestone from 0.3 to 1.6 m bgl. These are indicative of the Hythe and Sandgate Formation parent material on the site.

Recorded thicknesses for Head Deposits ranged from 0.25 m (TP206, TP226) to 4.65 m (not proved in WS103) although the base of the Head Deposits was not reached in 60% of the locations where this stratum encountered. Head Deposits were more widespread than shown on the geological map [9], in particular around the former airport where they were recorded as more than 2 m thick in BH210 and BH204 in the south of the site.

7.2.5 Folkestone Formation

The Folkestone Formation was only recorded in TP214 and TP215, located around Westenhanger in the northeast of the site. It was described as soft dark grey mottled brown silty fine sand and silts, 1.2m thick. However, this material could be the Marehill Clay Member of the underlying Sandgate Formation, based on the BGS description of this unit.

The Folkestone Formation appears to be absent where this unit is mapped at BH105 in the northeast of the site. This borehole instead encountered Head Deposits directly over silts and sands of the Sandgate Formation, which is consistent with previous nearby investigations recorded in BGS logs [27].

7.2.6 Sandgate Formation

The Sandgate Formation was encountered in BH101, BH102, BH105, BH206, BH208, TP213 and WS105. It comprised 1.5 to 2.0 m of loose to dense, yellow and brown, slightly silty, fine to coarse sand, over 2.5 m of very stiff brown sandy or gravelly clay. The gravel was angular fine to coarse mudstone and siltstone.

Sandgate Formation was recorded at 4.1 m thick at BH102 in the northwest of the site indicating it may extend further west than is shown on the geological map.

7.2.7 Hythe Formation

The Hythe Formation was encountered in 21 exploratory holes. This formation consisted of interbedded weak sandstone and limestone. The limestone was described as medium strong to strong grey micritic limestone. The rock appeared highly fractured with both subhorizontal and subvertical open fractures closely spaced throughout.

Due to the nature of the material the recovery of the sand layers was poor, likely due to blowout of the sands into the fractured limestone around the borehole. Low recovery in the Hythe Formation was recorded in BH101 (7.0 - 10.0 m bgl), BH104 (1.5 - 2.5 m bgl) and BH203 (8.2 - 10.5 m bgl) between approximately 88 to 94 m AOD, and in BH102 and BH103 (9.0 - 10.0 m bgl) at 61 to 64 m AOD. These may represent more fractured horizons within the limestone, or a greater proportion of weakly cemented sands.

Depth to the top of the Hythe Formation varies considerably across the site, generally less than 1 m bgl in the south of the site around the former airport and increasing to a maximum depth of 7.1 m in BH102 at Somerfield Court Farm in the northwest of the site (beneath the Sandgate Formation). It was not encountered at BH105 indicating that the top of this strata is deeper than 10 m bgl in the northeast of the site.

7.2.8 Atherfield Clay Formation

The Atherfield Clay was encountered in the northwest of the site, in TP218 and TP220 at 1.3 m and 0.2 m bgl (57.3 and 61.6 m AOD respectively). The Atherfield Clay is shown on the geological map outcropping along the East Stour River in the northwest, but it was not encountered where mapped further upstream at BH209 which was drilled straight into the underlying Weald Clay Formation.

The Atherfield Clay Formation was also recorded below the Hythe Formation in BH104 in the south of the site, at 6.8 m bgl (86.6 m AOD) and is shown outcropping at approximately 90 m AOD on the Greensand Escarpment 1.8km to the south of BH104.

The formation was described in the log for BH104 as very stiff grey sandy CLAY to extremely weak weathered mudstone. In the trial pits in the northwest it had weathered to a greyish brown sandy clay. A total of 3.15 m thickness was penetrated by BH104 before the borehole terminated at its scheduled depth. The Atherfield Clay is reported to attain thicknesses of 20-40 ft. (6 to 12m) [13].

7.2.9 Weald Clay Formation

The Weald Clay Formation was only encountered in BH209, between 3.76 m and 10.5 m bgl (54.1 and 37.4 m AOD). It was described as a firm to stiff blue grey silty clay, with closely spaced fissures at the top. The total thickness of this formation is given as 122 m at Hythe, 4 km to the east of the site [10].

7.3 Groundwater Conditions

7.3.1 Groundwater Strikes

Rotary drilling was carried out with an air-water mist flush in order to observe any significant groundwater entry to the boreholes.

Groundwater strikes were encountered at:

BH103 at 1.8 m bgl, within sandy clay Head Deposits, rising to 1.7 m bgl in 20 minutes;

- BH104 at 4.0 m bgl, within weathered Hythe Formation sands, rising to 3.8 m bgl in 20 minutes;
- BH105 at 4.2m bgl, within weathered **Sandgate Formation** sands, rising to 4.0 m bgl in 20 minutes;
- WS104A at 0.3m bgl, within Made Ground, rising to 0.2 m bgl in 5 minutes;
- WS104 B at 0.15m bgl, within **Made Ground**, rising to 0.1 m bgl in 5 minutes;
- WS107 at 2.85 m bgl, within sandy Head Deposits, rising to 2.0 m bgl in 20 minutes;
- BH206 at 5.2 m bgl, within the **Sandgate Formation**, rising to 3.19m bgl in 20 minutes;
- BH207 at 2.2m bgl, within fine grained Head Deposits, no rise recorded.

In addition, groundwater seepages were noted within window sample holes WS103, WS104C, WS105, WS106, WS108, WS109 and WS112, all within the Head Deposits, and BH209 in Alluvium. No significant groundwater was encountered within the trial pits.

Three rounds of groundwater monitoring were carried out following each phase of drilling works. Resting groundwater depths were recorded for the Arcadis exploratory holes installed with groundwater standpipes. Monitoring dates were 31st August and 8th and 15th September 2017, and 19-20th, 26 September, and 11th October 2018. Groundwater levels in existing boreholes BH1 to BH10 (PBA 2008 [15]) were also monitored on 8th September 2017 and 11th October 2018.

Groundwater strikes, and levels are summarised in Table 10. Water strikes during drilling are shown on the exploratory hole logs [25] [26] and groundwater levels during monitoring are detailed in Appendix H.

Table 10 Recorded Groundwater Depths and Elevations

Strata	Groundwater strikes during drilling		Groundwater rest level during monitoring		Comment
	m bgl	m AOD	m bgl	m AOD	
Made Ground	WS104A 0.3 WS104B 0.15 WS111 0.6	82.3 82.3 81.6	No data		-
Alluvium	None		0.64 (BH209) to 1.98 (BH207)	56.5 (BH209) to 66.85 (BH207)	BH207 and BH209 also screen Head Deposits and Weald Clay respectively.
Head Deposits	BH103 1.80 WS107 2.85 BH207 2.20	68.5 65.6 66.1	0.93 (WS105) to 2.67 (WS108)	66.2 (WS107) to 71.6 (WS108)	Standpipes in WS103, WS104C, WS112, WS202 and WS203 were dry on all monitoring rounds.
Sandgate Formation	BH105 4.2 BH206 5.2	75.8 66.9	2.25 (BH206) to 4.68 (BH208)	60.9 (BH208) to 77.1 (BH105)	-
Hythe Formation	BH104 4.0	90.6	1.48 (BH103) to 11.39 (BH6)	68.4 (BH103) to 94.4 (BH9)	BH101 and BH102 were dry on 1 and 3 monitoring rounds respectively. BH201, BH203, WS201, BH3, BH7, BH8 and BH10 were dry on all rounds.

7.3.2 BRE 365 Soakaway Testing

In order to obtain infiltration data for the outline drainage strategy, 22 No. soakaway tests in accordance with BRE 365 [28] were carried out in trial pits excavated in the Head Deposits and shallow bedrock across the site. Test sections were between 1.0 and 2.5 m bgl. Calculated infiltration rates (k) ranged between 1.4 x10⁻⁴ and 6.8x 10⁻⁹ m/s however all tests apart from TP219A did not reach 25% of effective depth and therefore the results should be used with caution. 15 No. soakaway tests did not record an infiltration value due to lack of measurable infiltration [25]. No compliant test was possible in TP208 due to very fast infiltration rates.

7.3.3 Deep Infiltration Testing

Information from Kent County Council has indicated that shallow soakaways in the Hythe Formation may cause washout of the sand layers, leading to ground instability (Section 12). To assess the feasibility of deeper soakaways, infiltration tests were carried out at approximately 5 m bgl in BH101, BH103, BH104 and BH204 within the Hythe Formation, and BH105 within the Sandgate Formation, in accordance with BS EN ISO 22282 [25]. Infiltration rates in the Hythe Formation were recorded between 1.2×10^{-5} m/s at BH103 and 4.8×10^{-7} m/s in BH104. Boreholes BH101 and BH204 did not record a value as the infiltration rate was too large to enable a measurable head of water to be generated. Borehole BH105 in the Sandgate formation recorded an infiltration rate of 1.3×10^{-7} m/s. Further details are presented in the factual reports in Appendix A and Appendix B and in the drainage report [24].

7.3.4 Groundwater Summary

Overall groundwater recorded in the monitoring standpipes during the return monitoring visits ranged between 56.5 m and 77.1 m AOD (0.6 m to 11.4 m bgl). Depths to groundwater were shallower in the north of the site as would be expected from the topography and location of surface water courses.

Groundwater depths in the Head Deposits ranged from 0.93 (WS105) to 2.67 m bgl (WS108). WS103, WS112, WS202, WS104C and WS203 were dry on all monitoring rounds. Groundwater within the Head Deposits is likely to be perched and unevenly distributed in the sand and gravel layers.

Groundwater elevations in the Hythe Formation in boreholes south of the A20 ranged from 89.2 to 96.4 m AOD (3.5 m to 11.4 m bgl). North of the A20 groundwater in the Hythe Formation was 66.3 to 68.8 m AOD consistent with a northwards flow direction in this stratum.

Groundwater in the Hythe Formation was shallowest at BH103 and BH207 at 1.4 m bgl around the confluence of the streams near the racecourse. Other locations recorded deeper groundwater in the Hythe Formation and some were dry to a significant depth (e.g. BH101, 9.9 m bgl; BH10 12.7 m bgl; BH102 9.6m bgl).

Groundwater in the Sandgate Formation in BH105 in the northeast of the site was recorded between 60.9 m and 77.1 m AOD (2.3 to 4.7 m bgl).

7.4 Evidence of Contamination

A hydrocarbon odour was noted between 0.0 and 0.4 m bgl in TP113, located in the southeast of the lorry park. Potential Asbestos Containing Material (ACM) was observed at 1.0 m bgl in TP203 located in the north of the former airport. No visual or olfactory evidence of contamination was recorded in any other exploratory hole.

On-site headspace screening for Volatile Organic Compounds (VOC) was carried out with a Photo Ionisation Detection (PID) on 305 soil samples from 48 exploratory holes. The majority of readings were below the limit of detection (<1 ppm) with the exception of three readings (max. 19.2 ppm) from BH203 at 1.5 m to 4.2 m bgl within the Head Deposits. This is considered likely due to interference rather than organic contamination as no visual or olfactory evidence was observed and no VOCs were detected in standpipe headspaces during return gas monitoring.

As discussed in Section 7.1, the potential contaminant source areas are mostly outside the development area and therefore most of the exploratory holes targeted contaminant pathways for gas or groundwater migration rather than sampling of the off-site potential source zones.

8 GEO-ENVIRONMENTAL ASSESSMENT - SOIL

8.1 Soil Analysis

To inform the preliminary human health risk assessment 78 No. soil samples were analysed from 58 No. exploratory holes, taken from depths ranging from 0.0 to 3.0 m bgl. Sampling locations were targeted at potential contaminant sources identified by the desk study, or within the site at the nearest point to off-site sources.

All soil samples were tested for:

- Asbestos (screen and identification)
- 76 No. Soil samples were tested for:
- pH
- Cyanide (total and free)
- Fraction of Organic Carbon (FOC)
- Total Phenols
- Speciated Polycyclic Aromatic Hydrocarbons (PAH EPA16)
- Heavy metals (Arsenic, Boron, Cadmium, Chromium (hexavalent), Chromium, Copper, Lead, Mercury, Nickel, Selenium, Zinc)

45 No. soil samples were tested for:

- Speciated Total Petroleum Hydrocarbons (TPH CWG including BTEX and MTBE)
- 1 No. soil sample was tested for:
- Volatile Organic Compounds (VOC)
- Semi-Volatile Organic Compounds (SVOC)
- 1 No. soil sample was tested for:
- Explosive suite

8.2 Tier 1 Soil Assessment

As the project is at masterplanning stage, the proposed land use layout (high and low density residential, commercial, public open space, etc.) is preliminary and likely to change. Therefore, Generic Assessment Criteria (GAC) for a conservative land use (a residential with plant uptake scenario) has been selected for the entire site, at this stage, for the Tier 1 human health risk assessment.

All the soil chemical data has been screened against the current LQM/CIEH Suitable for Use Levels (S4UL) [29] for residential land use with plant uptake. In the absence of a S4UL for lead, the Category 4 Screening Level (C4SL) has been adopted [30].

A Soil Organic Matter (SOM) content of 1% has been used in the assessment. This is slightly conservative as the average Fraction of Organic Carbon (FOC) for all the samples is 0.011 (converted to 1.91% SOM).

Table 11 summarises the contaminants that were recorded above the GAC. An exceedance of the GAC does not necessarily mean there is a significant risk to a receptor, as a contaminant linkage would need to be present. Where contaminant concentrations in soils sampled are below GAC they are considered unlikely to pose a significant risk.

Table 11 Summary of GAC Exceedances in Soils

Contaminant	GAC (mg/kg)	No. of exceedances / No. of tests	Concentration (mg/kg)	Samples exceeding
			Chrysotile (loose fibres)	WS105 0.1m (TS)
Asbestos (Not quantified at this	NA	4 / 77	Amosite (loose fibres)	TP205 0.7m (MG) HD201 0.0m (TS)
stage)			Chrysotile (cement debris)	TP203 1.0m (MG)
Benzo(a)anthracene	7.2	4 / 76	12 8.4 89 25	TP113 0.3m (MG) WS109 0.1m (TS) TP206 0.0m (TS) TP206 0.2m (HD)
Benzo(b)fluoranthene	2.6	8 / 76	12 6.2 9.8 3.5 2.9 4.7 98	TP113 0.3m (MG) WS101 0.5m (MG) WS109 0.1m (TS) WS110 0.05m (TS) HD201 0.0m (TS) TP205 0.7m (MG) TP206 0.0m (TS) TP206 0.2m (HD)
Benzo(a)pyrene	2.2	8 / 76	19 5.2 8.3 2.9 2.5 4.1 84 26	TP113 0.3m (MG) WS101 0.5m (MG) WS109 0.1m (TS) WS110 0.05m (TS) HD201 0.0m (TS) TP205 0.7m (MG) TP206 0.0m (TS) TP206 0.2m (HD)
Dibenz(a,h)anthracene	0.24	9 / 76	3.1 0.43 0.79 0.27 0.29 0.38 0.94	TP113 0.3m (MG) WS101 0.5m (MG) WS109 0.1m (TS) WS110 0.05m (TS) WS105 0.1m (TS) HD201 0.0m (TS) TP205 0.7m (MG)

Contaminant	GAC (mg/kg)	No. of exceedances /	Concentration (mg/kg)	Samples exceeding
			98	TP206 0.0m (TS)
			25	TP206 0.2m (HD)
Benzo(ghi)perylene	32	1 / 76	44	TP206 0.0m (TS)
Chrysene	15	2/76	69 17	TP206 0.0m (TS) TP206 0.2m (HD)
Indeno(1,2,3-cd)pyrene	27	1 / 76	42	TP206 0.0m (TS)
Lead	200	1 / 76	340	WS110 0.05m (TS)

MG = Made Ground, TS = Topsoil, HD = Head Deposits, NA = No GAC applicable

As summarised in Table 11 and Appendix F, most samples recorded contaminant concentrations below the GAC in the Made Ground and topsoil samples. Exceedances of GAC were not generally recorded for metals or inorganic contaminants, nor in samples from the superficial Head Deposits.

Preliminary indicators are thus that the development is not affected by severe contamination constraints.

Elevated concentrations of PAH were recorded in TP206 at 0.0m bgl (718 mg/kg total PAH16), TP113 at 0.3m bgl (133 mg/kg) and WS109 0.1m (70.8 mg/kg). GAC for seven common PAH contaminants were exceeded, although generally by a small margin (<50x the GAC).

TP206 is located in the north of the former airport, within a potential area of waste disposal (Table 11). The trial pit log recorded 0.15 m of Topsoil, described as black silty sand, over Head Deposits (clayey sand). No significant signs of hydrocarbon contamination are recorded but minor concentrations of PAH indicate the topsoil in this area may contain ash or other combustion products from historical land use within the area.

TP113 is located within the lorry park (former quarry and cement plant), and the elevated PAH and TPH concentrations recorded are consistent with the hydrocarbon odour noted on the log, and results of previous investigations [14] summarised in Section 3.2.

TPH was detected in all Made Ground samples in TP113 (within the lorry park/ former cement & asphalt works) down to 3.0 m bgl. However, the concentrations were all below the GAC and showed a declining trend with depth. Only heavier-end hydrocarbon bands (EC>12) were above detection limits, which is more indicative of historical (weathered) hydrocarbon contamination, rather than recent fuel spillages. In contrast, higher soil concentrations of DRO were recorded up to 7,300 mg/kg in the lorry park area in 2005; similarly elevated soil hydrocarbon concentrations may still be present in areas not sampled by the recent ground investigation.

A sample from TP113 was tested for VOCs and SVOCs but were all below detection except for the PAH compounds in the SVOC suite.

WS109 is located in a grassed area between the A20 to the south and an office building to the north, near the junction with Stone Street. The origin of the elevated TPH and PAH from the sample at 0.1m bgl is unknown. No visual or olfactory impacts were recorded in the borehole log. A pollution incident was recorded by the EA in 2001, located in the car park 100 m to the north of WS109, relating to a diesel spill (minor impact to water). The area around WS109 may have been similarly affected by fuel runoff from the car park. As this area is not proposed for redevelopment in the current masterplan, it is not considered to be a significant impact in the context of the scheme.

Chrysotile asbestos fibres were identified in topsoil from WS105. This is located to the rear of the vehicle repair shop at the Airport Café. Airborne asbestos fibres from brake dust etc. is considered a possible source of the fibres. No visible asbestos was recorded on the borehole log. The current masterplan shows medium density housing to the north of the airport café.

WS110 (0.05m bgl) recorded exceedances of the GAC for benzo(b)fluoranthene, benzo(a)pyrene, dibenz(a,h)anthracene and lead. No anthropogenic material or signs of contamination were recorded in the topsoil in the borehole log. This borehole is located at Folkestone Racecourse, adjacent to the above ground gas tank, electrical substation, and waste storage areas. The proposed use in the masterplan is shown as green infrastructure.

Minor exceedances of GAC for benzo(b)fluoranthene, benzo(a)pyrene, dibenz(a,h)anthracene were recorded in WS101 (0.5m bgl), located just inside the field opposite the entrance to Lympne Industrial Park. Road runoff is considered the most probable cause although deeper Made Ground containing brick and concrete to 1.2m bgl suggests previous development or construction waste disposal, possibly associated with the airport, may have taken place.

Hand dug pit HD201 was located at the former rifle range in the southeast of the site. Only minor anthropogenic material was noted in the log [26]. Minor exceedances of PAH were recorded in the surface soils at this location however no significantly elevated concentrations of heavy metals or other potential contaminants such as explosives were recorded. It is noted that this area is heavily overgrown and therefore the investigation coverage of the former range was limited to this single exploratory hole. Explosive residues may also be present in other areas of the former airport.

TP205 was excavated into the soil bund to the east of Lympne Industrial Estate. No significant indictors of contamination were recorded in the borehole log but minor exceedances of three PAH compounds were recorded along with loose fibrous asbestos debris (amosite). Other trial pits in the above ground bunds (TP203, TP204, TP227) did not record any GAC exceedances.

9 GEO-ENVIRONMENTAL ASSESSMENT - CONTROLLED WATERS

9.1 Summary of Groundwater Analysis

Groundwater samples were taken from all standpipes which had sufficient water to sample. Standpipes installed during Phase 1 were sampled on 31st August 2017, and standpipes installed during Phase 2 were sampled on 19th and 20th September 2018.

The response zones for Phase 1 standpipes were within the Head Deposits (WS105, WS106, WS107 & WS108), the Hythe Formation (BH103 & BH104), and the Sandgate Formation (BH105). For Phase 2 the response zones were across the Alluvium, Head Deposits and Hythe Formation (BH207), Head Deposits and Sandgate Formation (BH206, BH208), Alluvium and Weald Clay (BH209) and deeper within the Hythe Formation in BH202 and BH204.

The objectives of the groundwater sampling were to provide a preliminary assessment of groundwater quality across the site, to identify significantly polluted groundwater which may impact the masterplan and, obtain baseline water quality data.

A total of 14 No. groundwater samples were analysed for:

- pH and Alkalinity
- Cyanide (total and free)
- Sulphates
- Dissolved heavy metals (Arsenic, Boron, Cadmium, Chromium (hexavalent), Chromium, Copper, Lead, Mercury, Nickel, Selenium, Zinc)
- Speciated Phenols
- Speciated PAH (EPA16)
- Speciated TPH (TPH CWG including BTEX and MTBE)
- 7 samples were also analysed for:
- Calcium and dissolved organic carbon

9.2 Tier 1 Initial Screening Assessment

The groundwater samples were screened against Water Quality Standards (WQS) as an initial check on contaminant concentrations. The WQS are derived from published UK Drinking Water Standards (DWS) [31] and Environmental Quality Standards (EQS) [32].

DWS are protective of the water quality at the consumers tap and EQS are protective of the water quality of surface waters; therefore, the direct comparison with the groundwater concentrations below is considered a conservative assessment.

Where the EQS varies depending on the alkalinity of the surface water receptor a value of <50 mg CaCO₃/l has been used for the initial assessment as a conservative option.

Results of the groundwater analysis and screening are shown in Appendix G.

Table 12 Summary of WQS Exceedances in Groundwater

Contaminant	WQS (µg/l)	No. of exceedances / No. of tests	Concentration (µg/l)	Samples Exceeding	Water body
Cadmium	0.08 (EQS) 5.0 (DWS)	1 / 14 0 / 14	0.23	WS108	Head Deposits

Contaminant	WQS (µg/l)	No. of exceedances / No. of tests	Concentration (µg/l)	Samples Exceeding	Water body
Mercury	0.05 (EQS) 1.0 (DWS)	4 / 14 0 / 14	0.25 0.07 0.09 0.29	BH104 WS107 BH103 BH204	Hythe Formation Head Deposits Hythe Formation Hythe Formation
Nickel	14.3 (EQS*) 20.0 (DWS)	2 / 14	30.0 24.0	WS108 BH204	Head Deposits Hythe Formation
Zinc	22 (EQS) 3,000 (DWS)	1 / 14	87	WS108	Head Deposits

^{*} Site-specific PNEC calculated using mBAT bioavailability tool using assumed values for Ca (4 mg/l), DOC (5 mg/l) and pH (7).

In general, the groundwater analysis indicated that contaminant levels were low in all in the samples. No hydrocarbons or phenols were above method limit of detection. Several heavy metals were recorded above the EQS set for the protection of surface water ecosystems, but these were generally minor exceedances (recorded concentrations were the same order of magnitude as the EQS) and were all below the DWS (with the single exception of nickel).

The groundwater sample with the most and highest WQS exceedances was WS108, taken from groundwater in the Head Deposits at Folkestone Racecourse. This finding may reflect localised heavy metal contamination around the waste and fuel storage areas.

Low concentrations of dissolved mercury were detected in groundwater in the Head Deposits and Hythe Formation in BH204 and BH104 in the former airport, and BH103 and WS107 to the west of the racecourse. Mercury was historically used in electrical equipment and batteries. This may indicate a potential source of dissolved mercury in the south of the site, as the groundwater divide is located near the site boundary and therefore is less likely to be an off-site upgradient source. The greatest dissolved mercury concentrations were recorded in the south of the site and decrease along the groundwater flow path towards the River East Stour to the north. All the dissolved mercury concentrations recorded were substantially below the DWS criteria of 1 μ g/l.

Whilst several heavy metals have been recorded in groundwater above EQS, these criteria are protective of surface water ecology and therefore not a concern unless they are directly impacting surface waters. Shallow groundwater is likely to be hydraulically connected to the local surface water bodies, but the concentrations recorded in groundwater – at less than 10x the EQS – are unlikely to be high enough to cause significant deterioration of surface water quality. Except for nickel none of the dissolved metals are above drinking water standards. While additional analysis of surface water and groundwater for dissolved metals would be worthwhile, based on the data available they are not considered a significant concern in the context of the proposed development.

10 GEO-ENVIRONMENTAL ASSESSMENT - GROUND GAS

10.1 Gas Monitoring Summary

Potential sources of ground gas have been identified in Section 6.1, including the Lympne Industrial Park landfill and the Otterpool quarry backfill. The Alluvium deposits associated with the watercourses on site are also a potential source of ground gas.

Twelve Phase 1 exploratory hole locations installed with monitoring standpipes were monitored for ground gas on 31st August and 8th and 15th September 2017. These comprised boreholes BH101 to BH105, and the seven window sampled boreholes targeting shallow soils near to the potential ground gas sources shown in Table 7. The existing PBA boreholes BH1-BH10 screening the Hythe Formation in the south of the site were also monitored on 8th September 2017.

Three additional gas monitoring rounds were carried out in 2018. Phase 2 boreholes BH201 to BH204 and BH206 to BH209 and WS201 to WS203 were monitored on 19th-20th September, 26th September and 11th October. In addition, Phase 1 monitoring standpipes and PBA standpipes were monitored where these were in working order.

Concentrations of methane (CH₄), carbon dioxide (CO₂), oxygen (O₂), carbon monoxide (CO), and hydrogen sulphide (H₂S) were recorded. Atmospheric pressure and borehole pressure and flow were also recorded. The results of the monitoring are shown in Appendix H and summarised in Table 13.

Table 13: Summary of Gas Monitoring Results

Relative Pressure (mbar)	Borehole flow rate (l/h)	CH ₄ (% v/v)	CO ₂ (% v/v)	O ₂ (% v/v)	H ₂ S (ppm)	CO (ppm)
-11.8 to +0.4	-0.9 to +0.6	<lod 0.1<="" td="" to=""><td><lod 4.7<="" td="" to=""><td>3.4 to 21.0</td><td><lod< td=""><td><lod 15<="" td="" to=""></lod></td></lod<></td></lod></td></lod>	<lod 4.7<="" td="" to=""><td>3.4 to 21.0</td><td><lod< td=""><td><lod 15<="" td="" to=""></lod></td></lod<></td></lod>	3.4 to 21.0	<lod< td=""><td><lod 15<="" td="" to=""></lod></td></lod<>	<lod 15<="" td="" to=""></lod>

Atmospheric pressure recorded on-site during the monitoring was:

- 1007-1010 mbar on 31st August 2017
- 989 994 mbar on 8th September 2017
- 999-1001 mbar on 15th September 2017
- 1002-1009 mbar on 19-20th September 2018
- 1021-1027 mbar on 26 September 2018
- 999-1009 mbar on 11th October 2018

Rising and falling trends in atmospheric pressure during the monitoring rounds are shown in Appendix H. Monitoring has taken place during a low and falling pressure event which produces higher risk conditions for ground gas migration.

It is noted that groundwater level was above the top of the standpipe screen in BH103 on all six occasions, on one of three rounds for BH209, and on two of six occasions in WS105. The gas concentrations and borehole pressure recorded at these times may not be representative of the surrounding ground gas conditions.

10.2 Ground Gas Risk Assessment

A ground gas risk assessment has been carried out using the current guidance CIRIA C665 Assessing Risks Posed by Hazardous Ground Gases to Buildings [33] and BS8485 Code of practice for the design of protective measures for methane and carbon dioxide ground gases for new buildings [34].

As the proposed development is at masterplanning stage, building types and locations are subject to change. Therefore, two common approaches have been used: the Boyle and Witherington (NHBC) [35]

approach for low rise housing with a ventilated underfloor void (Situation B), and the modified Wilson and Card system [33] for all other building types (Situation A).

The gas regime will vary across the development area depending on the distance to gas generation sources, geology and groundwater conditions. It will also vary with time as atmospheric conditions affect gas generation and emission rates. However, as a preliminary assessment, the gas monitoring data from all locations has been combined and maximum values for the entire site used, giving a conservative risk estimate.

For both approaches a Gas Screening Value (GSV) is calculated using the following equation:

GSV (l/h) = max. borehole flow rate (l/h) x max. ground gas concentration (v/v %) / 100

Using the above equation, the following GSVs have been calculated:

- Methane GSV = 0.0006 l/h (0.1% CH4 and 0.6 l/h)
- Carbon Dioxide GSV = 0.028 l/h (4.7% and 0.6 l/h)

Based on the monitoring data, both the methane and carbon dioxide GSV are classified as 'Green' under the NHBC traffic light system for Situation B (low rise housing with ventilated underfloor void) [35]. This indicates a negligible gas regime has been identified and based on this, gas protection measures are not necessary.

For all other types of development (Situation A) the calculated GSV correspond to Characteristic Situation 1 ("very low risk") [33].

The concentrations of carbon monoxide and hydrogen sulphide recorded are not considered indicative of a significant risk to the development.

The generally low methane and carbon dioxide concentration are characteristic of natural soils with a low organic content or typical Made Ground. They suggest that the potential gas sources identified are of low gas generating potential. This is consistent with the information available on the landfill from the EA stating inert waste was deposited at the Lympne Industrial Park Landfill (Section 5.2). The low risk finding is also consistent with records of quarry spoil backfill at Otterpool Quarry.

The results of the gas risk assessment suggest that ground gas protection measures are not likely to be required for the majority, if not all, of the development [34]. The Local Authority should be contacted at detatiled planning stage to determine whether they are satisfied with the current gas monitoring

However, more detailed and targeted investigation should be undertaken at a later stage of design to confirm the preliminary CS1 and Green classifications. This should include a longer period of monitoring during adverse conditions for gas emission (falling atmospheric pressure).

11 REGULATORY ASPECTS, WASTE AND RE-USE OF MATERIAL

The proposed development is anticipated to generate soil and some rock materials, from excavations for building foundations and services, ground reprofiling for drainage, and construction of roads and other infrastructure. These soils will be predominantly uncontaminated natural soils. The scheme landscape design will likely need to include for beneficial reuse of such materials.

However, if there is no scheme requirement for certain materials, they may become waste.

EU Directives, UK Government policy and regulations require that construction waste to landfill is minimised. The waste hierarchy should be considered during the design: initially the creation of waste soil should be minimised, then where possible excavation arisings should be re-used on site as either engineering fill or landscaping fill. This approach would be beneficial to the scheme as it will potentially save costs on importing material on to site during the development and reduce fees for disposing of materials as waste. The reuse of soils on other sites may be possible. Disposal to landfill should be the last resort.

Contaminated soils, or soils that are otherwise unsuitable for reuse, may be treated to enable reuse elsewhere, or disposed of to landfill. If materials become waste they must be classified as hazardous or non-hazardous to determine the correct disposal route and comply with the Waste Acceptance Criteria (WAC) for that type of landfill.

11.1 Soil Waste Assessment (Hazardous/Non-hazardous)

The location, depth, type and volume of any waste soils will not be known until the construction phase. However, as a preliminary assessment the available chemical data for the soils sampled across the site in the phase 1 and 2 ground investigations has been classified as hazardous or non-hazardous in accordance with relevant EA guidance [36]. This may assist in planning future ground investigation and provide an indication to future developers of the potential need for expensive disposal of hazardous waste.

50 No. samples of Made Ground / Topsoil and 33 No. samples of the natural superficial deposits and bedrock, were screened using HazWasteOnline™ software to determine whether excavated material represented by these samples, in circumstances where they became waste, could be classified as hazardous or non-hazardous waste.

The List of Wastes Code used in the assessment was 17 05 04: soils and stones other than those mentioned in 17 05 03 (for non-hazardous material); whilst the code for the hazardous material would be 17 05 03. Laboratory reported concentrations (dry-weight basis) were corrected for the moisture content of each sample. The results of the assessment are presented in Appendix I.

None of the 83 No. samples were classified as hazardous waste by the preliminary assessment, although asbestos detected in four samples meant that these were classed as potentially hazardous. The four samples are summarised in Table 11.

Quantification of asbestos was not carried out in the preliminary ground investigation but would need to be undertaken prior to disposal of soil from these areas. If the soil contains 0.1% or more asbestos as free and dispersed fibres than it will be classified as hazardous waste under 17 05 03. It would also be classified as hazardous if the asbestos concentration in any identifiable pieces of ACM is 0.1% or more. In that case the soil would be regarded as a mixed hazardous waste under more than one code.

The initial screen of the data indicated that 17No. samples were potentially hazardous with regards to HP3 flammable, due to the concentration of Total Petroleum Hydrocarbons (TPH) (11-1,030 mg/kg). However, this assessment has been revised to non-hazardous, because the concentration of TPH required to be flammable in soil is greater than 1,000 mg/kg, and no evidence of free-phase product was identified on the exploratory hole logs.

The remainder of the soil samples (with no asbestos detected) would be classified as non-hazardous based on the determinants analysed and would be suitable for disposal as either inert or non-hazardous waste, pending the results of WAC testing.

It should be noted that a waste management facility is likely to require testing of the actual material that is to be disposed of off-site prior to acceptance, and that there is no obligation on a landfill operator to accept the waste. Therefore, further sampling and characterisation of the actual soil material to be disposed of will be required. Soils suspected of being contaminated during excavation should be stockpiled and tested separately to avoid mixing non-hazardous and hazardous waste and minimise the volume of hazardous waste.

11.2 Soil Materials Management Summary

Based on the assessment of the chemical results from the 83 samples of Made Ground and natural soils, most of the near-surface soils on the site are likely to be chemically suitable for reuse on site. Soils impacted by asbestos may be unsuitable for reuse and may require off-site disposal or treatment.

To comply with current environmental legislation and/or waste regulations, re-use of excavated materials is commonly undertaken via one of two routes. If materials are existing waste, or have become waste, then re-use may require regulation via Environmental Permitting (formerly Waste Exemptions).

However, on a development such as this, the hierarchy of reduce and reuse should be applied throughout the design process, such that suitably clean and geotechnically suitable materials do not become waste, i.e. re-use is pre-planned and a core part of the scheme design.

Reuse may then best be structured in accordance with the CL:AIRE Definition of Waste: Development Industry Code of Practice [37]. The key principles are that soils must be demonstrated to be required and be certain of use and be "suitable for use" both chemically and geotechnically. The CL:AIRE protocol provides a robust framework to enable compliance with legislation to be demonstrated, and is acknowledged as good practice by the EA.

A Materials Management Plan (MMP) (or method statement) should be produced during the design phase for the whole scheme or each phase of development. The analysis undertaken (soils and soil leachate) during this investigation can be used to help inform the scheme MMP; supported, development phase by development phase, by additional chemical testing to demonstrate compliance. The MMP must be "signed off" by a CL:AIRE Qualified Person (QP) and a declaration submitted to the EA. A verification report should be prepared following the works to demonstrate compliance with the MMP.

Should the excavated material not be physically or chemically suitable for use, or if there is an excess of materials, the material may become waste and might need to be disposed of to landfill, or could be taken to a soil treatment hub, or to a receptor site identified under the CL:AIRE protocol. Further testing and separation of waste for off-site disposal should be undertaken during the excavation works to minimise any treatment requirements. The testing will enable the classification of material to reduce wastes sent to non-hazardous and hazardous landfill.

Arisings should be stored in an appropriate manner to retain the desired properties and prevent leaching of contaminants or fines from the material. This should be in a location on site away from watercourses. Stockpiles should be kept at a suitably height to ensure that they remain stable. If considered necessary, the stockpiles should be covered to ensure that soils do not enter surface water runoff. Suspected inert, non-hazardous and hazardous material should be stored separately where appropriate to avoid cross contamination and avoid unnecessary disposal costs.

Any imported fill or topsoil for gardens and landscaped areas etc. used for the works must be suitable for use, fit for purpose and validated as necessary.

The site contains a significant amount of agricultural land, some of which is classified as best and most versatile (BMV Grades 2 and 3a) [1]. Topsoil is a valuable resource and should be reused wherever possible. Topsoil should be handled with care to avoid degradation in accordance with the Construction Code of Practice for the Sustainable Use of Soils on Construction Sites [38].

12 ENGINEERING GEOLOGY

12.1 Potential Ground Hazards

Information on natural ground hazards and has been obtained from the BGS Geosure datasets, which provide high-level information (Phase 1 level) on ground hazards on a regional scale based on the 1; 50,000 scale geological mapping. This has been combined with information on man-made ground hazards from other sources, such as Kent County Council, as summarised in Table 14.

Table 14 Summary of Ground Hazards

Hazard	Description
Collapsible ground	Low hazard associated with the fine-grained Head Deposits. Very low or no hazard elsewhere on site.
Running sands	Low hazard associated with the Alluvium and coarse-grained formations of the Lower Greensand (Hythe, Sandgate and Folkestone Formations). Very low or no hazard elsewhere on site. Information from Kent County Council indicates that 'washout', and subsequent ground instability, is often associated with the sand layers in the Hythe Formation. The weakly cemented sandstone can be washed into fractures in the limestone layers under the influence of infiltration from soakaways, leading to collapse around the soakaway [39].
Shrink-swell clays	Low hazard associated with the fine-grained Head Deposits and Weald Clay Formation. Very low or no hazard elsewhere on site.
Compressible ground	Low hazard associated with the Alluvium which is generally within 50 m of the main watercourses on the site. Very low or no hazard elsewhere on site.
Ground dissolution	No hazard, but note comment from Kent County Council considering washout risks.
Mining and quarrying	Quarrying is known to have taken place at Otterpool Manor (Section 3.1.1). No other quarries are recorded on the site. Several small pits were recorded on historical mapping in the late 1800s and early and were infilled by 1940 (Section 4.1). These are not located in proposed development areas. The site is not in an area affected by coal mining and no other mines have been identified within the site.
Landslide	The BGS records landslide deposits (Quaternary) on the south-facing scarp slope of the Hythe escarpment to the south of the site. As the slope is off-site, (with the exception of the far southwest corner) it is not considered to represent a risk to development on the site. The current masterplan does not include any development within 450 m of the southern site boundary. The majority of the site is classed as very low risk from landslide with the exception of small areas of low risk in the west of the site associated with the exposures of Atherfield Clay in the East River Stour valley
Cambering and gull cave formation	Cambering is known to occur in the Hythe Formation, where blocks tilt and move downslope due to the deformation of the underlying, less competent, Atherfield Clay Formation. This leads to the formation of subvertical fissures which are then infilled by overlying materials. These gull caves have been documented in the Maidstone area [40]. No records of gulls or similar infilled fissures are available for the site, but it is likely that any such features are confined to the south edge, near to the crest of the Greensand escarpment.

Further information on the above ground hazards in relation to potential geotechnical constraints for the Otterpool Park development is given in Section 12.3 below.

12.2 Summary of Geotechnical Testing

Preliminary in-situ and laboratory geotechnical testing has been undertaken on samples of the superficial deposits and bedrock underlying the site. The objective of the geotechnical testing was to enable basic characterisation of the engineering properties of the materials and to identify significant problematic ground conditions which may need to be considered at masterplanning stage. Further sampling and testing will be required for each phase of development to inform the design of structures and earthworks.

12.2.1 Laboratory Testing

The following laboratory tests were carried out:

- 26 No. particle size distribution by wet sieve and pipette;
- 36 No. moisture content tests (105oC drying temperature, BS1377 Part 2 clause 3.2);
- 27 No. 4-part plastic and liquid limit tests;
- 8 No. compaction tests (dry density/moisture content relationship by 2.5 kg rammer);
- 2 No. laboratory California Bearing Ratio (CBR) tests;
- 1 No. quick undrained triaxial test;
- 3 No. point load tests; and
- 17 No. BRE SD1 concrete classification tests.

The results of the geotechnical testing are presented in the Ground Investigation Reports (GIR) [25] [26] and summarised below.

SOIL CLASSIFICATION

Table 15 Summary of Soil Classification Test Results

Stratum	Moisture Liquid		Plastic	Plasticity	Particle Size Distribution (%)				Optimum Moisture
Stratum	Content (%)	Limit (%)	Limit (%)	Index (%)	Gravel	Sand	Silt	Clay	Content (%)
Made Ground	12 – 31	36 – 42	21 – 28	14 - 15	-	-	-	-	-
Alluvium	16 – 37	32 – 47	17 – 30	11 – 25	1	47	43	9	-
Head Deposits	14 – 44	29 – 58	15 – 38	11 – 34	0 – 36	6 – 77	14 – 68	0 – 47	11 – 14
Sandgate Formation	27 – 29	47	32	15	0	60	40	0	-
Hythe Formation	37	44	18	26	0	45 – 69	31	- 54	23
Atherfield Clay Formation	31	52	29	23	1	38	41	20	16

POINT LOAD STRENGTH INDEX TESTS

Three point load strength index tests were carried out on intact samples from the Hythe Formation, recovered from BH202 (3.4-3.8 m and 7.5-7.77 m bgl) and BH204 (3.2-3.43 m bgl). Field descriptions were strong grey and brown fine-grained sandstone. All samples were tested to failure and recorded size-corrected point load strength indices (Is₍₅₀₎) of 2.92, 0.93 and 0.10 MPa.

The wide range of point load values recorded is likely to be due to the variable nature of the Hythe Formation, which consists of strong limestone layers interbedded with less strong, weakly cemented sandstone layers. The sample from BH204 with a low point load strength value probably represents the latter material, possibly also highly weathered as it was from just under the overlying Head Deposits. The strength results are therefore representative of the individual material types and not the rock mass as a whole, and likely to be biased towards the stronger material.

CALIFORNIA BEARING RATIO (CBR)

Two laboratory CBR tests were carried out on remoulded samples of fine-grained Head Deposits from TP202 (0.4 m bgl) and TP223 (0.6 m bgl). Maximum CBR values of 3.4% and 15.0% were recorded for the two samples.

CBR results were also reported in the PBA report for the Link Park development north of Lympne Industrial Estate [15]. Average CBR values for six samples (0.5 to 1.5 m bgl) were between 1.1% and 5% with one result of 32%.

12.2.2 In-Situ Testing

STANDARD PENETRATION TESTING

Standard Penetration Tests (SPT) were carried out in 13 No. rotary boreholes and 10 No. windowless sampled boreholes. The resulting blow counts (N value) are given in the borehole logs in the GIR and summarised in Table 16.

Table 16 Summary of Standard Penetration Test (SPT) results

Stratum	No. of tests	N value Range	N Value Mean*	Relative Density
Alluvium	5	3 – 10	6	-
Head Deposits – coarse soils	22	4 – >50	26	Very loose to very dense
Head Deposits –fine soils	33	4 -> 50	15	-
Sandgate Formation – coarse soils	6	5 – 57	23.1	Loose to very dense
Sandgate Formation – fine soils	9	22 - >50	41	-
Hythe Formation (unweathered)	15	30 -> 50	47	Generally rock. All but 2 tests refused.
Atherfield Clay Formation	2	>50	>50	-
Weald Clay Formation	7	19 - 36	27	-

^{*} Tests that refused as >50 blows included in mean as 50

SPT tests results as reported on logs (uncorrected) are summarised by depth below ground level in Figure 11 below.

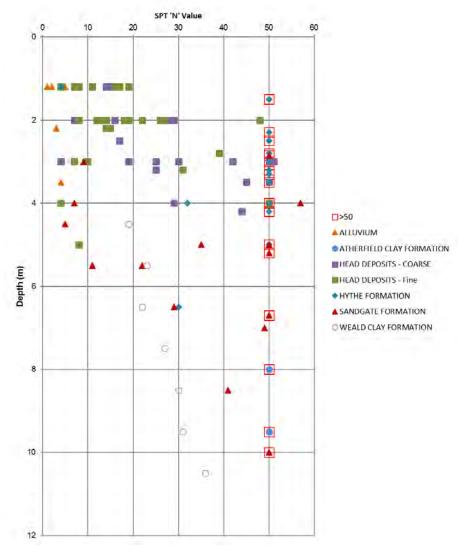


Figure 11 - Summary of SPT results

As shown in Figure 11, SPT values in Alluvium were generally <10 indicating soft ground conditions where these deposits are located. Head deposits comprising coarse material (sand and gravel) recorded higher N values with increasing depth (corresponding to medium dense to dense relative density below 2m bgl), while N values for fine-grained (clay and silt) materials were more variable. The Hythe Formation recorded N values of >50 even at shallow depths (1.5 m bgl in BH104) indicating shallow bedrock of high strength in the south of the site. N values in the Sandgate, Atherfield Clay and Weald Clay Formations were lower at shallow depths, increasing to >50 in the first two strata by 6 to 8 mbgl.

HAND VANE TESTING

Seventeen field hand vane tests were carried out on cohesive material from TP209 (weathered Hythe Formation), TP213 (Sandgate Formation), TP220 (Atherfield Clay Formation), and TP217 & WS201 (Head Deposits). The tests were carried out using a Pilcon hand shear vane with a cruciform vane of 19 mm diameter following the method outlined in the Ground Investigation Report [26]. Due to the nature of the samples tested, the results are indicative for assistance in determining soil consistency for logging purposes only and should not be used to classify soil strength.

12.3 Engineering Discussion

12.3.1 Proposed Construction

Currently the project is at an early stage and therefore the final layout and form of development is subject to change. The purpose of this investigation is not to obtain information for the design of roads or structures, but to identify at an early stage ground characteristics and comment on those that may require non-standard engineering solutions for the types of development outlined in the current masterplan (Section 1.4).

Further investigation will be required to provide information for design of pavements, buildings, structures etc. once the form and location of these are finalised.

It should be noted that the samples tested will not be necessarily representative of the locations or depths of the eventual foundations, and therefore additional sampling and testing will be required prior to detailed design stage.

12.3.2 Subsurface Obstructions

Several previously developed areas have been identified within the site based on desk study information and historical mapping. These include the:

- Former airport buildings along the southern site boundary and west of Otterpool Lane opposite the industrial park;
- Former airport runways and taxiways;
- Former rifle range in the southeast of the site;
- Former buildings associated with WWII use (e.g. bunkers which may have been infilled);
- Demolished buildings to the southwest of Westenhanger station (current racecourse); and,
- Former quarry buildings and cement/asphalt works foundations and tanks in the current lorry park (known hydrocarbon contamination Section 3.2).

Other structures associated with the former airport and racecourse may also be present.

The potential for remnant foundations and other abandoned structures at these locations should be considered during the design and construction phases. Ground disturbance caused by the removal of historical structures may increase the thickness of any Made Ground present.

12.3.3 Building Foundations

Potential foundation solutions for buildings and other structures will be dependent on the extent and thickness of any Made Ground and the geotechnical properties of the superficial deposits and bedrock.

MADE GROUND

Made Ground is generally considered unsuitable for foundations due to its variable composition and its potential for high total and differential settlement. Non-standard foundations (e.g. piles or raft solutions) would likely be required for any areas of significant Made Ground thickness.

The fill depth at Lympne Industrial Park landfill is not known. The maximum depth of Made Ground in this area was 0.6m bgl in BH202, which is shown within the landfill. It may be that the majority of the fill is located in the vegetated area between to the north of this borehole. It is noted that the current masterplan shows the landfill area as green space.

FINE SOILS

An estimate of the undrained shear strength (c_u) of clay has been calculated from the uncorrected 'N' value and the plasticity index of the fine-grained materials based on the relationship by Stroud (1974) [41].

 $c_u = f_1 N$

Table 17 Estimated Mean Undrained Shear Strength of Clay

Material	No. of PI tests	Mean Plasticity Index (PI) %	Corresponding value of f ₁	Mean N value*	Estimated mean Undrained Shear Strength (c _u) kPa
Alluvium	5	17	5.0	6	30
Head Deposits – fine soils	17	20	4.8	15	72

^{*} Fine grained material only

Based on the initial assessment, the fine-grained Head Deposits are likely to be suitable for supporting shallow foundations for low rise buildings that impose moderate loading. The Alluvium is likely to be marginal in terms of its load settlement characteristics and further testing and assessment will be required. It is noted that the Alluvium is confined to the areas around the surface watercourses and no buildings are shown in these areas in the current masterplan.

The coarse-grained Head Deposits are also likely to be suitable for supporting shallow foundations for low rise buildings that impose moderate loading.

Throughout the superficial deposits the SPT results are variable across the site, and therefore settlement characteristics should be confirmed with additional testing.

BEDROCK

Where superficial deposits are absent or of shallow thickness, foundation level will be within the bedrock, predominantly the Hythe Formation.

Where the Hythe Formation is present at shallow depths beneath the ground (centre of the site south of the A20), bearing capacity is likely to be sufficient to support foundations for residential low rise buildings, based on the results from the strength index tests and SPT testing reported above. However, excavations for deep foundations may be difficult and require heavier equipment (Section 12.3.5).

Excavations should be inspected by a suitably qualified geotechnical engineer to confirm that a suitable formation is present.

12.3.4 Pavements

Laboratory CBR tests from samples of the Head Deposits in the south of the site have been undertaken during the recent and previous investigations. Recorded values were mostly between 2.5% and 5%. Relevant guidance (IAN 73/06) [42] recommends an equilibrium CBR of 3% for a sandy clay of plasticity index 10-20% for a low water table in poor construction conditions. Therefore, based on the available data, extensive ground improvement for standard pavement construction in this area is unlikely to be required, although limited enhancement measures for any soft spots may be necessary.

However, design CBR values and frost susceptibility for all areas of the site will need to be established from more detailed investigation at the design stage. Variations in the subgrade material, especially in areas of Alluvium, may mean that a lower CBR will be encountered.

12.3.5 Excavations and Shallow Groundwater

Forty trial pits (TP101 to TP113 and TP201 to TP228) were excavated to depths of between 0.4 m and 3.4 m bgl. Stability of the pit sides was generally good in the short term, except for TP105 west of the racecourse which encountered Alluvium to 1.4 m bgl and Head Deposits (sands and gravels) to the target depth of 2.5 m bgl. Poor side stability was also noted in TP209 and TP222, located in the south of the site in weathered Hythe Formation before terminating on stronger bedrock material. A collapse was also noted in TP218 located in the northwest of the site which was excavated to scheduled depth at 2.7m bgl within Atherfield Clay Formation. Excavations deeper than 0.5 m should therefore be battered back or shored if person entry is required or they are to be kept open for a long period of time.

No significant groundwater entry was recorded during excavation of the trial pits, however shallow groundwater strikes (<2 m bgl) were recorded in WS104(A&B), WS111 and BH103 (Table 10). Groundwater control may therefore be required for any excavation.

Excavatability was reported to be good through the superficial deposits but fifteen trial pits were terminated prior to target depth due to refusal on bedrock (Hythe Formation). These were generally located south of the A20 in the centre of the site, confirming that rockhead is shallow in this area (refusal depths were 0.4 m to 3.4 m bgl using an 8 tonne JCB 3CX with toothless bucket). The top of the Hythe Formation was recorded at <1.0m bgl in BH104, TP209, TP206, BH202, TP222 and TP221.

Due to the stronger limestone layers in the Hythe Formation (max. $Is_{(50)} = 2.92$ MPa), excavation may be difficult with conventional equipment, depending on the local ratio of limestone and sandstone, presence of discontinuities and the degree of weathering. Information from rotary cored borehole logs (BH101 to BH105) indicates that the limestone contains very closely to closely spaced (20 to 200 mm) subhorizontal and subvertical fractures which could be exploited during excavation.

12.3.6 Earthworks and Material Reuse

Soil arisings from excavations for landscaping, foundations or drainage features may be reused on site as fill if geotechnically suitable, and if chemically suitable for reuse (see Section 11).

Six laboratory compaction tests were carried out on samples of the Head Deposits to determine the Optimum Moisture Content (OMC) for compaction. The optimum moisture content for the samples ranged from 11 to 14%, and the material had relatively low sensitivity to moisture changes. Initial (natural) moisture contents ranged from 11 to 21%, thus some materials are wet of optimum and would require conditioning.

Compaction tests in areas of proposed detention basins (TP218 and TP221) indicate that the OMC is 16% for Atherfield Clay Formation and 23% for weathered Hythe Formation. Natural moisture contents were 19% and 28%, (and 31% and 37% in separate samples of these materials) and therefore are also wet of optimum.

The fine-grained materials are therefore likely to be suitable for reuse as general or landscape fill, if handled and stored appropriately. Further testing will be required to determine whether they can be reused as engineering fill.

12.3.7 Other Ground Conditions

GROUND COLLAPSE

The Head Deposits are shown as containing possibly collapsible ground when loaded and saturated (low risk) by the BGS. However, no significant thicknesses of loessic soil (wind-blown silt deposits) were encountered in the Head Deposits during the ground investigation, and therefore no further assessment of collapse risk is considered necessary.

RUNNING SANDS

Running sand conditions occur when loosely packed sand layers are fluidised by flowing water. Information from the local authority indicates that this has occurred where surface water is drained to the Hythe Formation via soakaways etc. causing washout of the sand layers and consequent ground settlement [39]. The recovery of the sand layers within the Hythe Formation in the rotary boreholes BH101 to BH104 and BH201 to 204 was poor (Section 7.2.7) and therefore thicknesses are difficult to determine, but may be around 0.2 to 0.6 m thick [15].

Where the top of the Hythe Formation is close to the ground surface (predominantly in the south of the site) the risk of collapse due to surface water infiltration is highest. Design of soakaways and other drainage features should be sited away from buildings and deep bored soakaways may be required to reduce the risk. Further details will be given in the outline drainage report [3].

SHRINK SWELL CLAYS

Whilst all clays are susceptible to shrinkage and swelling, some clays are highly susceptible to volume changes under varying moisture conditions, which may pose a hazard to foundations and subsurface

structures. The modified plasticity index l'_p has been used to assess the potential for ground shrinkage or swelling.

$$I_p' = I_p \times (\% < 425 \mu \text{m}) / 100\%$$
 (BRE, 1993)

Table 18 Volume Change Potential

Material	Number of tests	Plasticity Index <i>Ip</i> (%)	Modified Plasticity Index <i>l'p</i> (%)	Volume change potential
Alluvium	5	11 to 25	9 to 25	Low to medium
Head Deposits – fine soils	17	11 to 34	11 to 34	Low to medium
Sandgate Formation	1	15	15	Low
Atherfield Clay	1	23	23	Medium

There are many existing mature trees on the site. Addition or removal of trees will affect the soil moisture content and may contribute to subsidence or heave. The recommendations in NHBC Standards Chapter 4.2, should be incorporated into the design [43].

The full results of the plasticity testing are given in the laboratory certificates in the Ground Investigation Report [25] [26]. The samples are classified as clays and silts of low to medium plasticity when plotted on a plasticity chart (Section 12.2.1).

12.3.8 Drainage

Soakaway tests in accordance BRE365 were undertaken in trial pits TP101 to TP112 to determine whether infiltration rates may allow for infiltration to dispose of surface water from the proposed development. Further details can be obtained from the Drainage Report [24].

12.3.9 Buried Concrete

As part of the preliminary ground investigation, chemical testing was carried out on selected materials to provide a preliminary assessment of the potential for aggressive ground conditions. Elevated sulphate concentrations may under some conditions cause the deterioration of concrete in direct contact with soil or groundwaters.

The fine-grained clays and silts of the Atherfield and Weald Clay Formation, and superficial deposits derived from them are the most likely strata on the site to contain pyrite, a common source of sulphates. The recent Alluvium deposits are also a potential source of sulphates [44].

28 No. soil samples were analysed for water-soluble sulphate (2:1 leachate equivalent) and 12 No. soil samples were analysed for the full suite specified in BRE Special Digest 1 [44]. In addition, 7 no. groundwater samples were analysed for dissolved sulphate.

The Design Sulphate Class (DS) for the strata on the site are summarised in Table 19 below. The Site was assessed as a location where disturbance of pyrite-bearing natural ground could result in additional sulphate. Mobile groundwater was assumed for the assessment. Due to the large area of the site compared with the number of samples available the maximum concentration was taken as the characteristic value.

Table 19 Concrete Assessment - Design Sulphate Class

		Water-solub	le sulphate in	soil (2:1) as SC	₄ (mg/l)	Sulphate in	Design
Material	N	Minimum	Mean	Maximum	Characteristic Value	groundwater as SO ₄ (mg/l)	Sulphate (DS) Class
Topsoil	8	0	13	20	20		DS-1
Made Ground	9	10	61	200	200		DS-1
Alluvium	1	0.65	0.65	0.65	0.65		DS-1
Head Deposits	23	0	34	150	150	21.0 – 173	DS-1
Sandgate Formation	1	0.16	0.16	0.16	0.16		DS-1
Atherfield Clay Formation	1	30	30	30	30		DS-1
Weald Clay Formation	1	1.3	1.3	1.3	1.3		DS-1

Based on the available samples all the strata were classified as DS-1 (lowest potential for concrete attack). The total potential sulphate (% SO₄) and groundwater pH were assessed to determine the Aggressive Chemical Environment for Concrete (ACEC) class. All locations represented by the samples tested are classified as AC-1.

The results indicate that the soils are unlikely to present a risk of aggressive ground conditions (DS-1 and AC-1). This should be confirmed with additional testing during a during development-specific ground investigation in accordance with guidance in BRE Special Digest 1 [44].

13 CONCLUSIONS AND RECOMMENDATIONS

13.1 Conclusions

The objective of this report was to identify significant ground risks that may affect the feasibility or design of the overall masterplan for Otterpool Park.

No critical issues have been identified that may significantly impact the development feasibility; however, a number of potential constraints on the development that should be taken into account to avoid or mitigate against potential construction impacts have been identified. These are summarised below.

13.1.1 Soil and Groundwater Contamination and Ground Gas Risk

No visual or olfactory indicators of soil or groundwater contamination were observed and PID screening recorded low or negligible concentrations of volatile contaminants at the locations investigated.

The results of the Tier 1 soil contamination assessment suggest that most of the site does not exceed generic criteria for a residential end use. Minor exceedances of GAC for PAH and lead and loose asbestos fibres have been recorded, but evidence of gross soil contamination that may impose significant costs or constraints on the development has not been found at this stage. Further ground investigation at higher densities will be required to confirm the extent and magnitude of soil contamination and determine appropriate mitigation measures prior to any development.

The preliminary groundwater testing carried out indicates that the majority of the potential contaminants that were analysed are not of concern. Minor exceedances of water quality criteria for heavy metals were recorded in groundwater in the Head Deposits and Hythe Formation, but are not considered significant in the context of the proposed development. Low but consistent concentrations of mercury have been detected in Hythe Formation groundwater in the south of the site, potentially indicating an on-site source that has not yet been located, these are also considered unlikely to cause significant surface water quality issues.

Ground gas monitoring results indicate that the soils around the monitoring locations are of low gas generation potential. This includes locations near to the Lympne Industrial Park Landfill and the Alluvium deposits.

The Lympne Industrial Park landfill was not directly investigated at this stage, but no evidence of leachate or landfill gas migration was observed at four locations placed around the boundary of the landfill (WS102 (refused at 0.3 m bgl), WS103, WS112 and BH1). This preliminary finding is consistent with the inert classification suggested by desk study information. Further investigation is recommended at detailed design stage.

13.1.2 Soil Materials Management

Based on the assessment of the chemical results from the 34 samples of Made Ground and Head Deposits, the majority of the near-surface soils on the site are likely to be chemically suitable for reuse on site. Soils impacted by hydrocarbons from the existing lorry park were classified as potentially hazardous waste and are likely to be unsuitable for reuse without treatment; these may require off-site disposal.

13.1.3 Engineering Considerations

A limited number of buried obstructions have been recorded, at the racecourse and former cement works.

Shallow foundations are generally expected to be a suitable option for residential, lightly-loaded and low-rise structures proposed at the site, however suitable precautions should be taken in line with NHBC Foundation guidance with respect to the presence of medium volume change potential cohesive strata.

Bedrock (Hythe Formation) is present at shallow depths in the centre of the site, which may cause difficult excavation conditions. Generally, groundwater inflows in trial pits were not significant, but some groundwater control may be required during construction, with higher probability in lower lying areas in the centre and north of the site, and during wet weather.

The potential for washout of sand layers within the Hythe Formation should be considered in the design of soakaways and other drainage features.

No other geological hazards or usual ground conditions which have a high potential to significantly affect the proposed scheme have been identified at this stage.

Initial in-situ and laboratory testing has been carried out at widely spaced locations across the site. More detailed ground investigation will be required at design stage to provide adequate data and confirm the preliminary geotechnical parameters reported herein. Excavations should be inspected by a suitably qualified geotechnical engineer to confirm that a suitable formation is present.

13.1.4 Unexploded Ordnance (UXO)

Potential risks from UXO have been identified due to the historical use of the southern part of the site as a RAF base. Records indicate that this part of the site was heavily bombed in WW2 and not all dropped ordnance may have exploded or subsequently been located. In addition, pipe mines were laid beneath the runways, and while some clearance activities were undertaken, further pipe mines were uncovered in the 1950s and 1960. An abandoned bomb is recorded in the northwest corner of the site. Further details are presented in the UXO desk study in Appendix D.

The potential for undiscovered unexploded bombs (UXB) or pipe mines may present a significant constraint to the development. The current masterplan includes residential housing in the area of the former airport, including runway areas that may have been mined. Preliminary geophysical surveys have indicated the presence of features that may represent UXO, including pipe mines. Additional work will probably need to be undertaken to mitigate the risk from UXO in this area. This will likely need to include non-intrusive surface surveys (electromagnetic and radar) covering any areas of proposed ground disturbance and the attendance of Explosive Ordnance Clearance (EOC) engineers during any excavation works. Where deeper excavations (>2m) for foundations etc. are required, deeper clearance methods may be required.

13.1.5 Otterpool Quarry SSSI

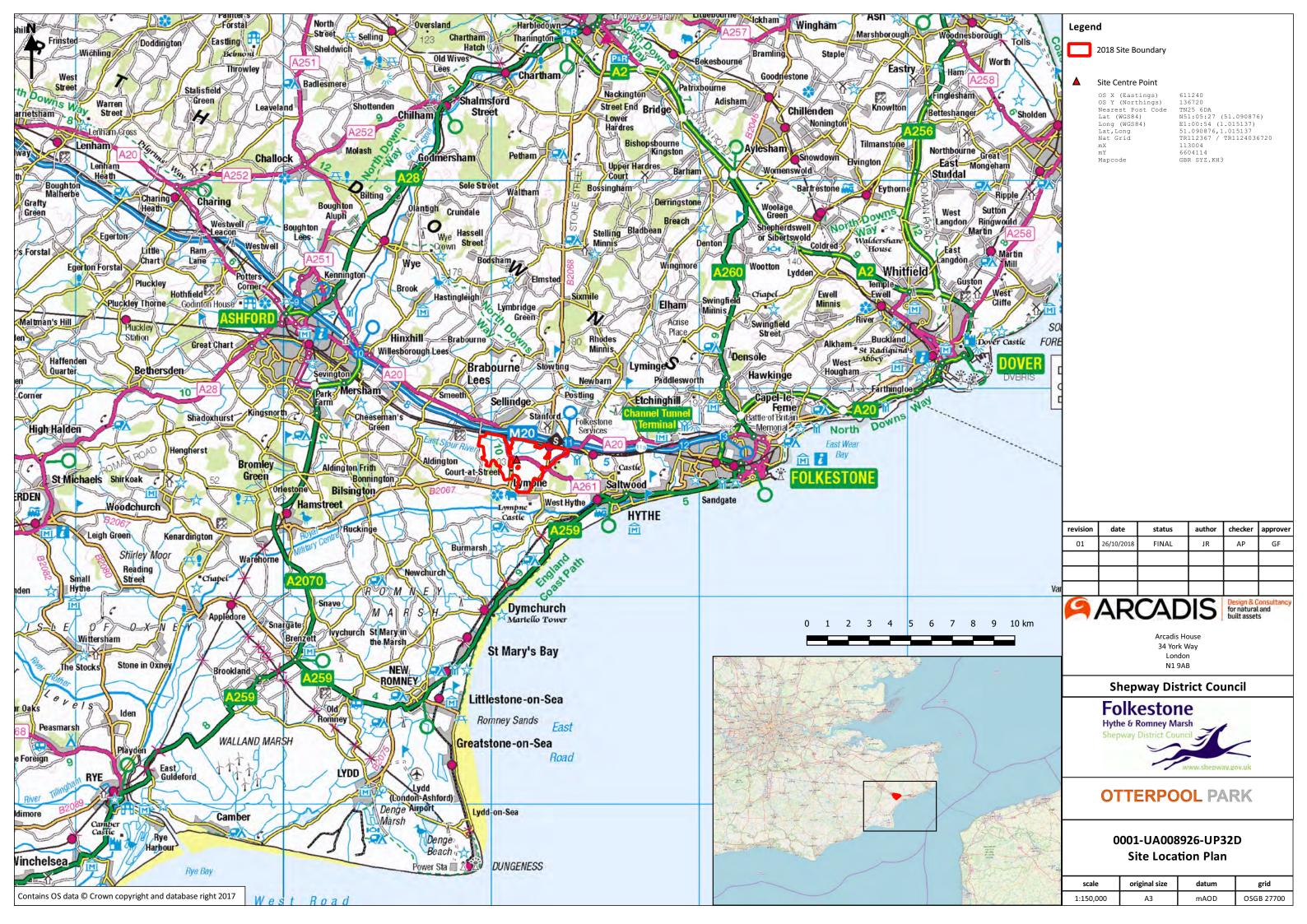
The former Otterpool Quarry in the centre of the site is a protected SSSI. This imposes limits of the development allowed in this area. Potential options for management and improvement of the site have been discussed with Natural England. If changes are made to the site management these need to be approved by Natural England and must not adversely impact the features of interest.

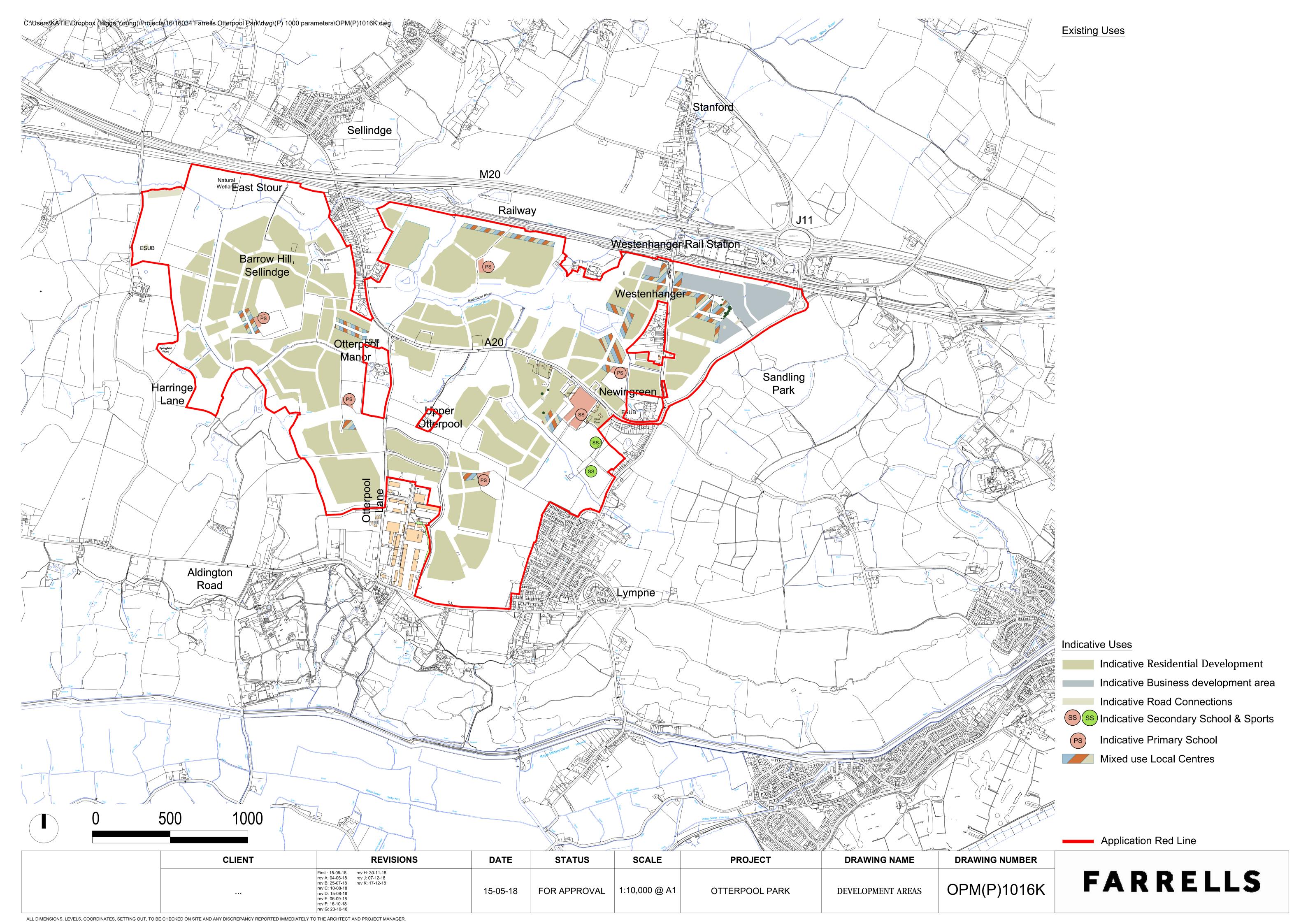
13.2 Recommendations

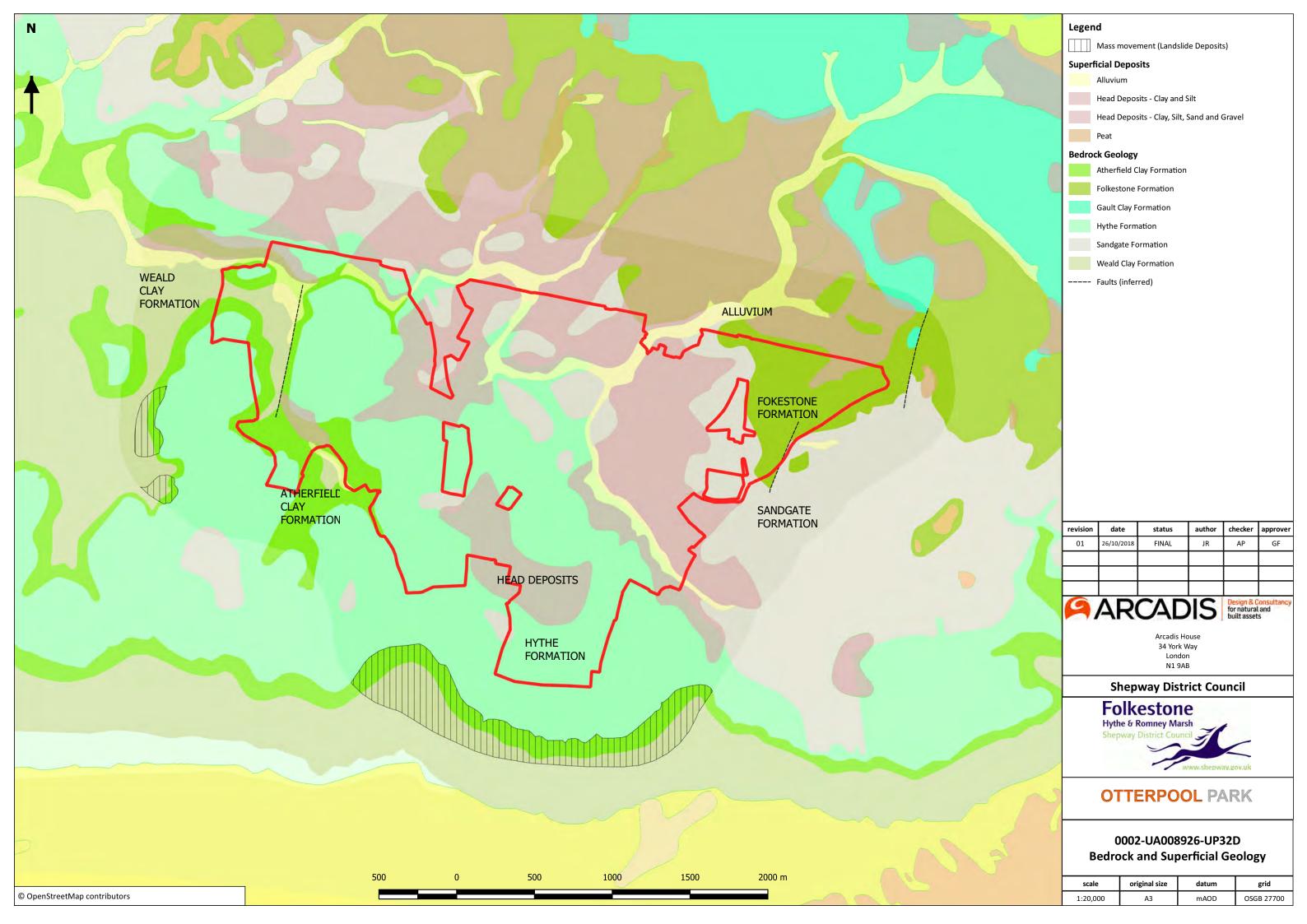
- Additional ground investigation and risk assessment in accordance with BS 10175 and CLR11 [20] will be required for each phase of development, with the expectation being to confirm the generally low risks to the receptors identified in this report, and define location specific mitigation measures. This should include:
 - Testing of soil and groundwater samples and quantitative risk assessment for human health and controlled waters. with regards to the proposed form and layout of development (e.g. human exposure scenarios and proposed foundation design). This should include further testing of groundwater and surface waters for dissolved metals.
 - Additional ground gas monitoring within the identified potential gas sources (e.g. on-site landfill) to confirm that the risk from ground gases to human and built receptors is low. The number and frequency of gas monitoring rounds is dependent on the form of development. Away from the potential gas sources further monitoring may not be required, the Local Authority should be contacted to determine their requirements.
 - Particular focus should be given to the Lympne Industrial Park landfill to confirm the ground conditions and fill thickness within the landfill especially if this is to be developed.
- 2. Additional ground investigation to support the design of foundations and other structures will be required, and should include specific determination of load settlement response in Alluvial and Head Deposits in particular.

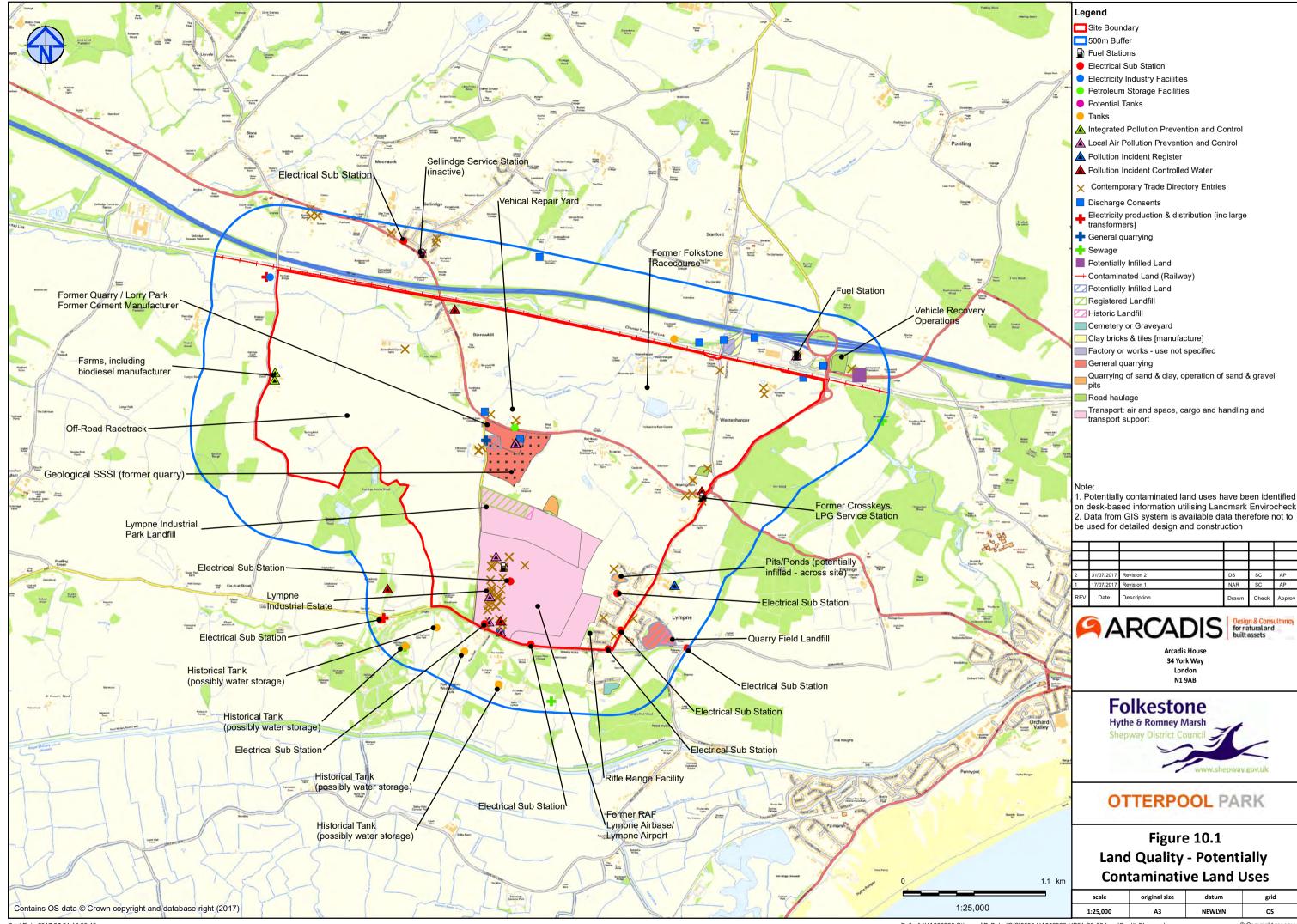
- 3. Preparation of a Materials Management Plan (MMP) in accordance with the CL:AIRE Industry Code of Practice [37] for each phase of development is recommended to maximise sustainable reuse of topsoil and subsoil within the development.
- 4. A risk mitigation plan should be prepared by a UXO specialist for any development within the areas given a medium or high UXO hazard rating. The plan should identify the recommended risk mitigation techniques appropriate for the proposed form of development, and EOD procedures in the event of encountering UXO.
- 5. Additional ground investigation to determine the geological sequence in the SSSI site and map the interest features in greater detail is recommended. This would inform the potential options for protecting and incorporating the geological SSSI site into the development.

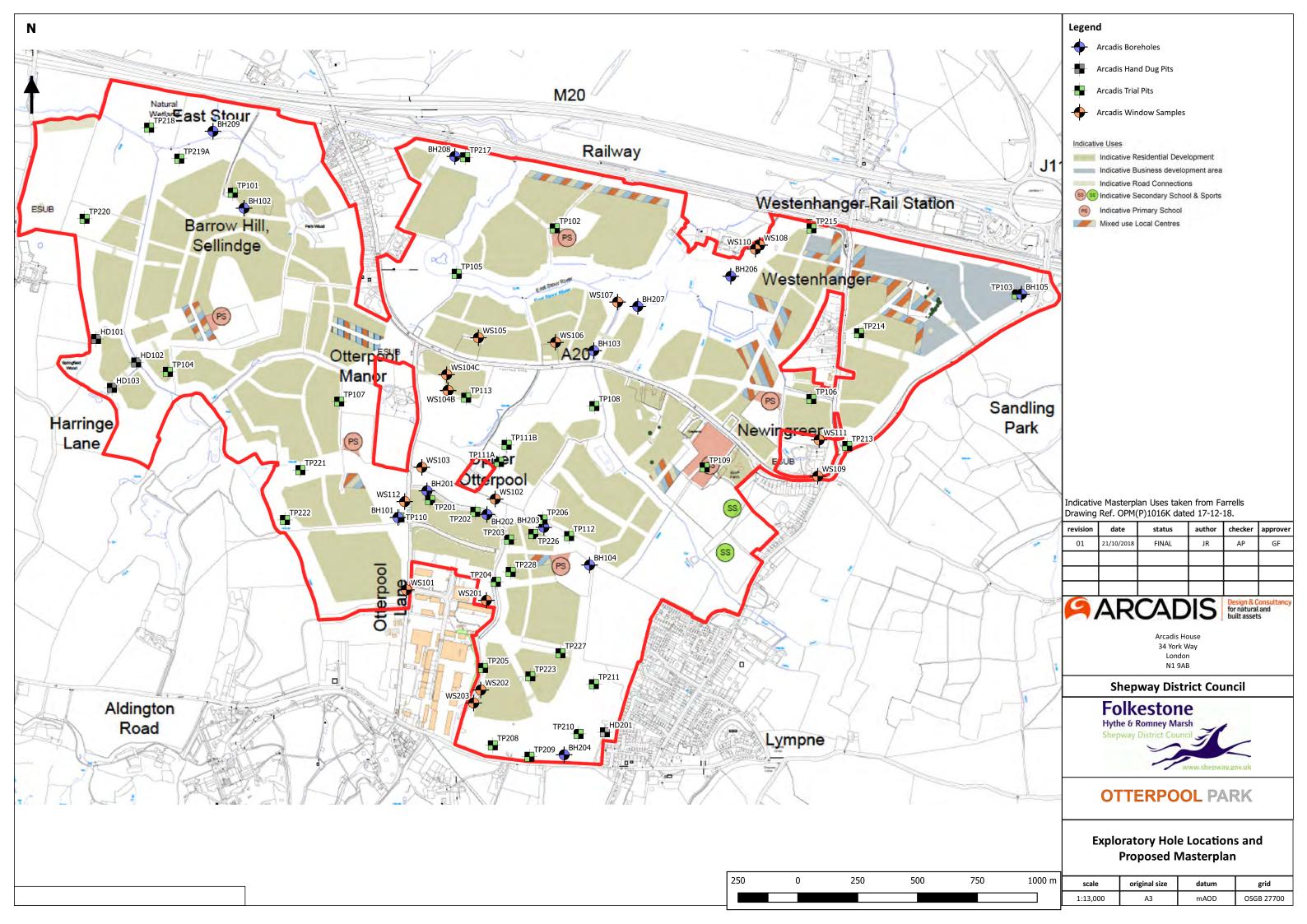
References

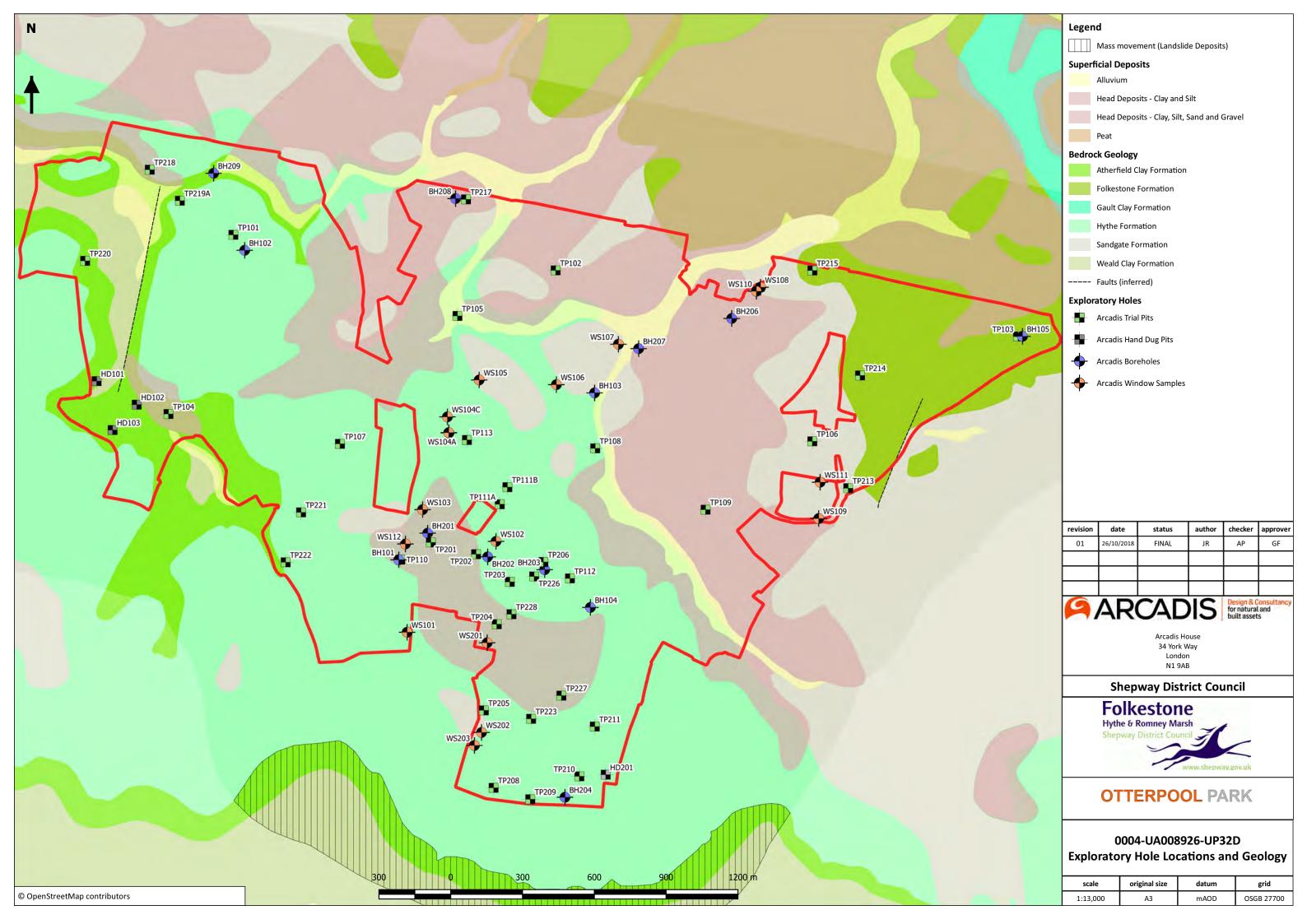

- [1] Arcadis, "Otterpool Park Garden Town, Stage 1 Feasibility and Capacity Study," Arcadis COnsulting (UK) Ltd., London, 2017.
- [2] Arcadis, "Otterpool Park, Environmental Impact Assessment Scoping Report," Arcadis, London, 2018.
- [3] Arcadis, "Otterpool Park Environmental Statement, Appendix 15.1 Flood Risk Assessment and Surface Water Drainage Strategy, Report No. 10011914-Otterpool FRA and SWDS-02, November 2018," Arcadis Consulting (UK) Ltd., London, 2018.
- [4] Google Maps, "Map of Otterpool, Kent, 51.0860491,0.9957246," September 2017. [Online]. Available: https://www.google.co.uk/maps/place/Lympne/@51.0860491,0.9957246.
- [5] Bing Maps, "Map of Otterpool, Kent, 51.0860491,0.9957246," September 2017. [Online]. Available: https://www.bing.com/maps/.
- [6] OS, Ordnance Survey Landranger 189 Map Ashford & Romney Marsh, Ordnance Survey (OS), 2016.
- [7] BBC, "War and Peace Show relocating to Folkestone Racecourse," British Broadcasting Corporation (BBC), 2012 December 2012. [Online]. Available: http://www.bbc.co.uk/news/uk-england-kent-20658047. [Accessed 18 December 2017].
- [8] Google Earth, *Google Earth Pro v7.1.5.1557*, lat 51.079192 long 1.017838 eye alt 1.47: Kent County Council, 1940.
- [9] BGS, "Geological Map of Folkestone and Dover (S&D) 1:50,000 scale," British Geological Survey (BGS), Nottingham, 1974.
- [10] BGS, "The BGS Lexicon of Named Rock Units," British Geological Survey (BGS), September 2017. [Online]. Available: http://www.bgs.ac.uk/lexicon/.
- [11] CIRIA, "Special Publication 149, A Guide to British Stratigraphical Nomenclature," CIRIA and BGS, London, 1998.
- [12] The Gallagher Group, "Investment, technology and a local workforce," The Gallagher Group, 2011. [Online]. Available: http://www.gallagher-group.co.uk/hermitagequarry/hermitage_quarry.html. [Accessed September 2017].
- [13] NERC, Geology of the Country around Canterbury and Folkestone, Natural Environment Research Council (NERC), 1966.
- [14] SLR, "Otterpool Quarry, Nr Hythe, Kent, Contamination Assessment, SLR Ref. 409.1376.00002," SLR, 2008.
- [15] PBA, "Link Park, Lympne, Kent, Report on Hydrogeological Assessment, Ref.16003/051D Doc Ref. 6962 JC ab," Peter Brett Associates (PBA), West Malling, 2008.
- [16] BGS, "The Physical Properties of Major Aquifers in England and Wales, Technical Report WD/97/34, R&D Publication 8," British Geological Survey (BGS) and Environment Agency Hydrogeology Group, Nottingham, 1997.
- [17] Historic England, "Aerial Photos," 2017. [Online]. Available: https://www.historicengland.org.uk/images-books/archive/collections/aerial-photos/. [Accessed 11 11 2016].
- [18] Zetica, "UXO Desk Study and Risk Assessment, Otterpool Park, Lympne, Kent, Ref. P6258-17-R1, Rev. B," Zetica Ltd., Long Hanborough, 2017.
- [19] Zetica, "Otterpool Park, UXO Risk Mitigation for Ground Investigation, Ref. P6248-17-R2-A 12th July 2018," Zetica Limited, Eynsham, 2018.
- [20] DEFRA, "Model Procedures for the Management of Land Contamination, Contaminated Land Report 11," Department for Environment Food and Rural Affairs (DEFRA) and Environment Agency (EA), Bristol, 2004.
- [21] DEFRA & EA, "Potential Contaminants for the Assessment of Land, CLR 8," Department for Environment Food and Rural Affairs (DEFRA) and the Environment Agency (EA), Bristol, 2002.
- [22] HSE, "Protection of Workers and the General Public during the Development of Contaminated Land," Health and Safety Executive (HSE) Library and Information Services, Sheffield, 1991.

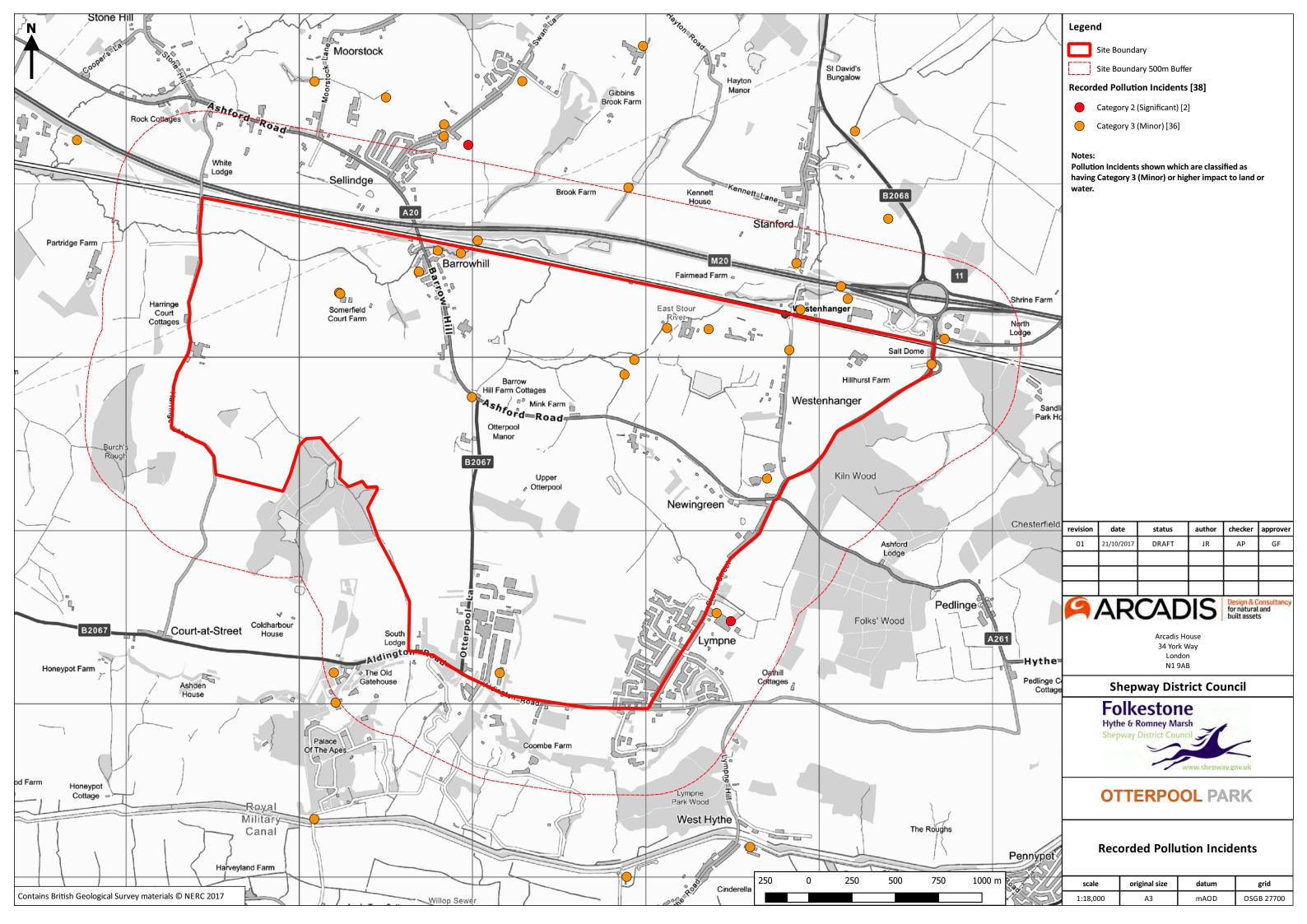

- [23] Construction (Design and Management) Regulations, 2015.
- [24] Arcadis, "Otterpool Park Environmental Statement, Appendix 15.2 Water Cycle Study, Report No. 10011914-Otterpool Outline WCS-02," Arcadis Consulting (UK) Ltd., London, 2018.
- [25] Arcadis, "Otterpool Park, Ground Investigation Report, Ref. 0001-UA008926-43-AFS-GLR-G001," Arcadis, Bristol, 2017b.
- [26] Arcadis, "Otterpool Phase 2 Ground Investigation Factual Report, ref. 10011914-AFS-GLR-G001, November 2018," Arcadis Consulting (UK) Ltd., Guildford, 2018.
- [27] BGS, "Onshore GeoIndex Service," British Geological Survey (BGS), 2017. [Online]. Available: http://www.bgs.ac.uk/GeoIndex/.
- [28] BRE, "Digest 365 Soakaway Design," BRE Group and IHS Global Ltd. February 2016, ISBN 978-1-84806-918-6, Watford, 2016.
- [29] LQM / CIEH, "The LQM / CIEH S4ULs for Human Health Risk Assessment," Land Quality Management Ltd. (LQM) and the Chartered Institute for Environmental Health (CIEH), Nottingham, 2015.
- [30] DEFRA, "Development of Category 4 Screening Levels, Main Report, SP0101," Department for Environment Food and Rural Affairs (DEFRA), London, 2012.
- [31] The Water Supply (Water Quality) Regulations 2016 SI No. 614, 2016.
- [32] The Water Framework Directive (Standards and Classification) Directions (England and Wales) 2015, 2015.
- [33] CIRIA, "C665 Assessing Risks posed by Hazardous Ground Gas to Buildings," Construction Industry Research and Information Association (CIRIA), London, 2007.
- [34] BSI, "Code of Practice for the Design of Protective Measures for Methane and Carbon Dioxide Ground Gases for New Buildings, BS 8485:2015," British Standards Institute (BSI), 2015.
- [35] NHBC, "R&D Publication 66 (Volume 1): Guidance for the Safe Development of Housing on Land Affected by Contamination," NHBC, EA, CIEH, 2008, 2008.
- [36] UK Environment Agencies, "Guidance on the Classification and Assessment of Waste (1st Edition 2015) Technical Guidance WM3," Published by the Environment Agency, Natural Resources Wales, Scottish Environment Protection Agency and Northern Ireland Environment Agency, Bristol, 2015.
- [37] CL:AIRE, "Definition of Waste: Development Industry Code of Practice, Version 2, March 2011," Contaminated Land: Applications in Real Environments (CL:AIRE), London, 2011.
- [38] DEFRA, "Construction Code of Practice for the Sustainable Use of Soils on Construction Sites," Department for Environment, Food and Rural Affairs, London, 2009.
- [39] Kent CC, "The Soakaway Design Guide (July 2000)," Kent County Council, Maidstone, 2000.
- [40] J. Griffiths and C. Martin, "Engineering Geology and Geomorphology of Glaciated and Periglaciated Terrains: Engineering Group Working Party Report," British Geological Survey (BGS), London, 2017.
- [41] M. A. Stroud, "The Standard Penetration Test in Insensitive Clays and Soft Rocks," in *Proc. Eur. Symp. on Penetration Testing*, 1974.
- [42] Highways England, "Interim Advice Note (IAN 73/06) Rev.01 Design Guidance for Road Pavement Foundations (Draft HD25)," Highways England, London, 2009.
- [43] NHBC, "Chapter 4.2 Building Near Trees," in *NHBC Standards 2017*, London, National House Building Council (NHBC), 2017.
- [44] BRE, "Concrete in Agressive Ground, Special Digest 1: 2005 3rd Edition," Building Research Establishment (BRE) Construction Division, London, 2005.


Otterpool Park Environmental Statement Appendix 10.1 – Ground Conditions Report


DRAWINGS

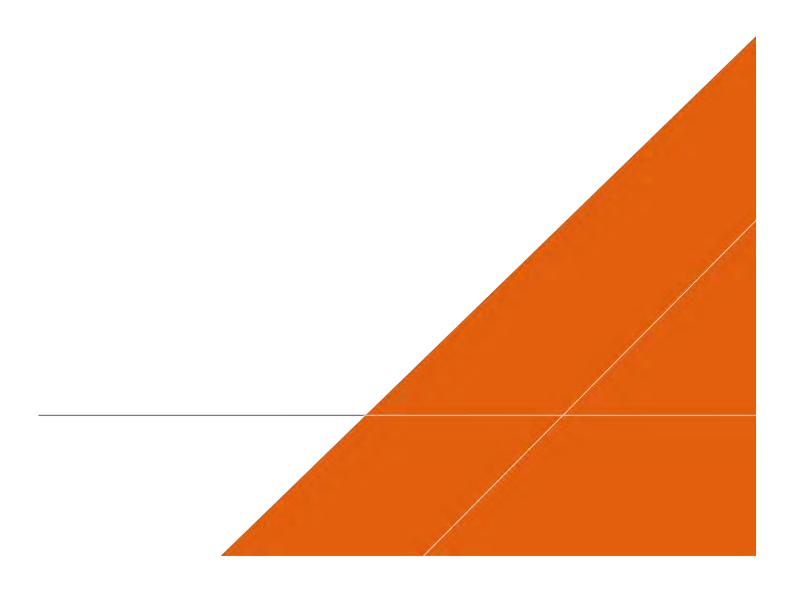

Arcadis	0001-UA008926-UP32D-01	Site Location Plan
Farrells	OPM(P)1016K 17-12-18	Indicative Masterplan Phases Rev.K
Arcadis	0002-UA008926-UP32D-01	Bedrock and Superficial Geology
Arcadis	5002-UA008926-UP31-S2-02	Potentially Contaminative Land Uses
Arcadis	0003-UA008926-UP32D-01	Exploratory Hole Locations and Proposed Masterplan
Arcadis	0004-UA008926-UP32D-01	Exploratory Hole Locations and Geology
Arcadis	0005-UA008926-UP32D-01	Pollution Incidents





Otterpool Park Environmental Statement Appendix 10.1 – Ground Conditions Report

APPENDIX A


Arcadis Ground Investigation Factual Report, December 2017

OTTERPOOL PARK

Ground Investigation Factual Report

December 2017

CONTACTS

SAM SUMMERS Consultant

dd +44 (0) 117 372 1385 m +44 (0) 779 336 9178 e sam.summers@arcadis.com Arcadis Consulting (UK) Ltd. Level 1 2 Glass Wharf Temple Quay Bristol BS2 0FR United Kingdom

Ground Investigation Factual Report

AUTHORISED SIGNATURES

Author Sam Summers

Checker Ian Parsons

Approver Jon Venn

Report No UA008926-43--AFS-GLR-G001

Date December 2017

Version control

Version	Date	Author	Changes
00	December 2017	Sam Summers	

This report dated December 2017 has been prepared for Shepway District Council (the "Client") in accordance with the terms and conditions of appointment dated 3rd July 2017 (the "Appointment") between the Client and **Arcadis Consulting** (**UK**) **Limited** ("Arcadis") for the purposes specified in the Appointment. For avoidance of doubt, no other person(s) may use or rely upon this report or its contents, and Arcadis accepts no responsibility for any such use or reliance thereon by any other third party.

CONTENTS

1	INTRODUCTION	1
1.1	Limitations	1
1.2	Proposed Development	1
1.3	Existing Information	1
2	SITE DETAILS	2
2.1	Site Location and Description	2
2.2	Geology	3
2.3	Hydrogeology and Hydrology	5
3	FIELDWORK	7
3.1	General	7
3.2	Exploratory Holes	9
3.2.1	Exploratory Hole Locations	9
3.2.2	Investigation Methodology	9
3.2.3	Dynamic Sampling	13
3.2.4	Rotary Drilling	13
3.2.5	Trial Pitting/Trial Trenches	13
3.3	In situ Testing	14
3.3.1	Penetration Testing	14
3.3.2	Hydraulic Tests	14
3.3.3	VOC Head Space Screening	16
3.4	Installations and Post-fieldwork Monitoring	16
3.4.1	Installations	16
3.4.2	Post-fieldwork Monitoring	17
4	LABORATORY TESTING	18
4.1	General	18
4.2	Geotechnical Laboratory Testing	18
4.3	Geo-Environmental Laboratory Testing	18
5	REFERENCES	20

FIGURES

Figure 2-1 Site Location	2
Figure 2-2 Geological Setting	3
TABLES	
Table 2-1 Historical landfills	3
Table 2-2 Anticipated geological sequence	4
Table 2-3 Encountered geological sequence in historical borehole logs	5
Table 3-1 Initial ground investigation scope	7
Table 3-2 Summary of completed exploratory holes	9
Table 3-3 Test Hammer Calibrations	14
Table 3-6 Summary of open system variable head permeability tests	14
Table 3-9 Summary of trial pit soakage tests	15
Table 3-10 Summary exploratory hole installations	17
Table 4-1 Summary of geotechnical test data	18
Table 4-2 Summary of geo-environmental test data – soil matrix	19
Table 4-3 Summary of geo-environmental test data – groundwater matirx	19

APPENDICES

APPENDIX A

DRAWINGS

Drawing 5005-UA008926-UP31-S2-03-Ground Investigation Layout Plan

APPENDIX B

STANDARD PROCEDURES

APPENDIX C

EXPLORATORY HOLE LOGS

APPENDIX D

CERTIFICATION OF FIELD APPARATUS

APPENDIX E

IN SITU AND MONITORING DATA

APPENDIX F

GEOTECHNICAL LABORATORY TEST DATA

APPENDIX G

GEO-ENVIRONMENTAL LABORATORY TEST DATA

1 INTRODUCTION

Shepway District Council propose to develop a new garden town known as Otterpool Park in the county of Kent, to the south east of Ashford. This ground investigation was commissioned by Shepway District Council, 'the Client', to inform on the ground conditions at the site.

The scope of the ground investigation was determined by Arcadis Consulting (UK) Ltd, and the work was instructed on the 3rd July 2017.

This report provides a factual account of the fieldwork undertaken including engineering descriptions of the various strata encountered, results of *in situ* testing and the subsequent geotechnical and geo-environmental laboratory testing undertaken on samples obtained.

1.1 Limitations

This report has been prepared for the Client in accordance with the terms and conditions of appointment. Arcadis cannot accept any responsibility for any use of or reliance on the contents of this report by any third party. The copyright of this document, including the electronic format and any AGS data, shall remain the property of Arcadis.

Arcadis do not accept liability for any use of the information presented in this report unless it is signed by the author, checker and approver and marked as final

It should be noted that ground conditions between exploratory holes may vary from those identified during this ground investigation; any design should take this into consideration. It should also be noted that groundwater levels may be subject to diurnal, seasonal, climatic variations and those recorded in this report are solely dependent on the time the ground investigation was carried out and the weather before and during the investigation.

1.2 Proposed Development

The proposed development comprises a new garden town which will comprise housing, land for employment, shops, schools and medical centres, as well as extensive open spaces and access to the countryside.

1.3 Existing Information

- 1. Otterpool Park Garden Town, Site Investigation Plan; Arcadis 2017
- 2. Otterpool Fusion Plan, Service drawings; Centara, 2017
- 3. Otterpool Park, UXO Desk study and risk assessment; Zetica 2017

2 SITE DETAILS

2.1 Site Location and Description

The site is situated approximately 6 km southeast of Ashford, Kent at approximate grid reference TR 10982 36516. Figure 2-1 shows the site location.

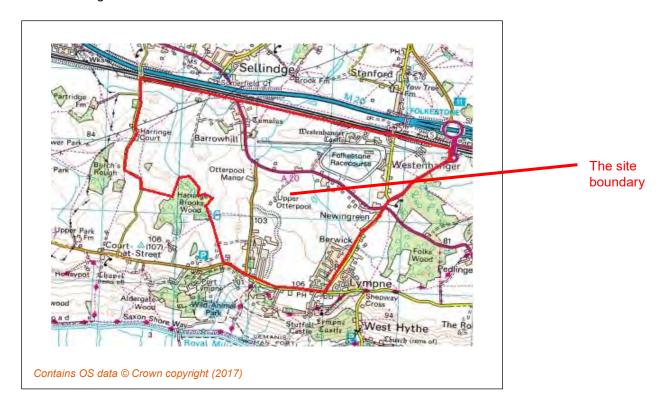


Figure 2-1 Site Location

At the time of the investigation, the site comprised arable and pasture fields, roads and trackways, farms and small clusters of buildings. The old Folkestone Racecourse forms the northeast part of the site. An industrial estate is located in the southern part of the site, and is surrounded by an earth embankment.

The A20 traverses the site in a roughly east to west orientation, and the B2067 traverses the site north to south. There are sporadic ditches and ponds across the site and a dirt-bike track located to the north west of the site.

The M20 and a railway line borders the site to the north, and the site is surrounded by agricultural land in all other directions. Small towns such as Westenhanger, Newingreen and Lympne are located to the east of the site.

Springfiled Wood and Park Wood are located within the site boundary. Rabbit Wood, Harringe Brook Woods and Folks Wood border the site to the west, southwest and east respectively.

The topography of the site slopes downwards towards the north, with an approximate ground elevation of 100 m AOD on the sites southern boundary (B2067) to 65 m AOD on the sites northern boundary (railway line). Barrowhill, which is located in the northwest part of the site, has a ground elevation of 80 m AOD.

With reference to the Environment Agency (EA) 'What's in my backyard?' website [18], there are no active landfills located within 1 km of the site. Two historical landfills were identified to be within 1 km of the site, including one located on site. A summary of the historic landfills is shown in Table 2-1.

Table 2-1 Historical landfills

Landfill Name	Distance from Site	Date of Closure	Waste Description	Waste Control Measures
Lymnpe Industrial park	On-site Not specified		Inert	Not specified
Quarry Field	430 m southwest	Dec 1962	Inert and Household	Not specified

2.2 Geology

In summary, the published 1:50 000 scale British Geological Survey (BGS) map of the area incorporating the site, Sheet 305 & 306 [1], and the BGS online GeoIndex [17] indicate the site is underlain by superficial deposits of Head (clay and silt) and Alluvium (clay silt, sand and gravel).

The underlying bedrock geology consists of strata from the Folkstone Formation (sandstone), the Sandgate Formation (sandstone, siltstone and mudstone), the Hythe Formation (interbedded sandstone and limestone), the Atherfield Clay Formation (sandy mudstone) and the Weald Clay Formation (mudstone).

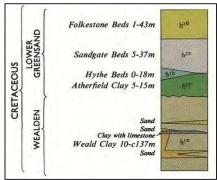
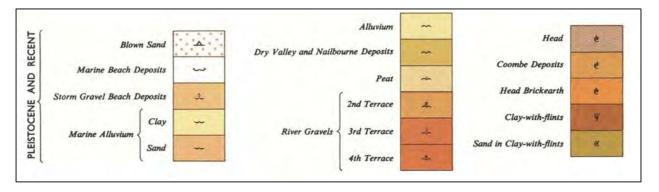



Figure 2-2 Geological Setting

A summary of the anticipated geological sequence is shown in Table 2-2.

Table 2-2 Anticipated geological sequence

Period	Formation	Description
	Alluvium	Normally soft to firm consolidated, compressible silty clay, but can contain layers of silt, sand, peat and basal gravel. A stronger, desiccated surface zone may be present.
Quaternary	Head	Polymict deposit: comprises gravel, sand and clay depending on upslope source and distance from source. Poorly sorted and poorly stratified deposits formed mostly by solifluction and/or hillwash and soil creep. Essentially comprises sand and gravel, locally with lenses of silt, clay or peat and organic material. In the Bristol area: red or brown silt and stony clay with cobbles of hard rock, eg Carboniferous limestone or sandstone. Argillaceous frost-shattered rock debris either insitu or soliflucted. Soliflucted deposits have variable sand/clay content.
	Folkstone Formation	In Sussex, Kent and Surrey the formation comprises medium- and coarse-grained, well-sorted cross-bedded sands and weakly cemented sandstones; elsewhere includes calcareous sandstones. There are no formal divisions in the Weald, but equivalent beds in the west are termed the Child Okeford Sand Member and the Bedchester Sands Member.
	Sandgate Formation	Fine sands, silts and silty clays, commonly glauconitic; some sands limonitic or calcareous; some soft sandstones.
Cretaceous	Hythe Formation	In the western Weald, the formation comprises mainly fine- to medium-grained, sparsely glauconitic sands, sandstones and silts, locally pebbly, with calcareous or siliceous cement in beds or lenses in some areas. Some clay interbeds, including Fuller's Earth. In Kent and eastern Sussex the formation comprises, alternating sandy limestones ("Ragstone") and glauconitic sandy mudstones (Hassock).
	Atherfield Clay Formation	Generally massive yellowish brown to pale grey sandy mudstone throughout most of its outcrop, with an impersistent phosphatic pebble bed with vertebrate bones, gritty sandstone or very shelly sandy mudstone with glauconite, at the base. At the type site on the Isle of Wight, the predominant lithology is blue grey mudstone, variably sandy with calcareous concretions; the formation includes beds of sandstone, clay ironstone and phosphatic nodules. Weathers to a chocolate brown, bluish grey and brown, mottled pinkish brown to orange.
	Weald Clay Formation	Dark grey thinly-bedded mudstones (shales) and mudstones with subordinate siltstones, fine- to medium-grained sandstones, including calcareous sandstone (e.g. Horsham Stone Member), shelly limestones (the so called "Paludina Limestones") and clay ironstones.

Two faults are located on site comprising a north to south trending fault located approximately 800 m east of the site's western boundary. The fault sub-crop is approximately 1 km long and the downthrow is to east. A second north to south trending fault is located on the eastern boundary of the site. The fault sub-crop is approximately 700 m long, and the downthrow is to the west.

In addition to the published data described above, a review of data from BGS online GeoIndex [17] identified four historical boreholes located on site. A summary of the encountered geological sequence in the historical borehole is shown in Table 2-3 and also shown in Appendix C.

Table 2-3 Encountered	analogical	l acquence in	historical	harahala laga
Table 2-3 Elicoulitered	geological	Sequence in	IIISluiicai	DOI ELLOIE 1005

Borehole	Depth (m)	Description
TR13NW83	0.00 – 5.31	Folkstone Beds
TR13NW84	0.00 - 7.39	Hythe Beds
TR13NW31	0.00 - 6.10	Sandgate Beds
	6.10 – 18.00	Hythe Beds
	0.00 - 0.25	Top Soil
TR13NW44	0.25 – 2.15	Medium dense to dense, grey brown, locally glauconitic clayey silty SAND, with occasional flint fragments [HEAD]
	2.15 – 2.70	Medium strong, grey sandstone to borderstone overlying hard RASSTONE beds [HYTHE BEDS]

The Coal Authority website [Error! Reference source not found.] indicates no evidence of coal outcrops or mining activities within the immediate vicinity of the site.

2.3 Hydrogeology and Hydrology

The superficial deposits (Alluvium) are classified as a Secondary A aquifer, meaning "permeable layers capable of supporting water supplies at a local rather than strategic scale, and in some cases forming an important source of base flow to rivers".

The superficial deposits (Head) located in the northeast part of the site are classified as a Secondary Undifferentiated aquifer, meaning "this has been assigned in cases where it has not been possible to attribute either category A or B to a rock type. In most cases, this means that the layer in question has previously been designated as both minor and non-aquifer in different locations due to the variable characteristics of the rock type".

The bedrock deposits (Folkstone Formation and Hythe Formation) are classified as Principal aquifers, meaning "these are layers of rock or drift deposits that have high intergranular and/or fracture permeability - meaning they usually provide a high level of water storage. They may support water supply and/or river base flow on a strategic scale".

The bedrock deposits (Sandgate Formation) are classified as a Secondary A aquifer.

The bedrock deposits (Atherfield Clay Formation and Weald Clay Formation) are classified as Unproductive Strata, meaning "these are rock layers or drift deposits with low permeability that have negligible significance for water supply or river base flow".

The site is not situated in a source protection zone.

The closest surface water feature is the East Stour River, which is located in the northern part of the site and is trending from east to west. A number of small streams and ponds feed into the East Stour River from across the site. A spring is located in the southeast part of the site.

A flood risk zone, level 2 and 3, is located in the northern part of the site. This is associated with East Stour River.

3 FIELDWORK

3.1 General

Ground investigation works were carried out in a single phase between the 14th and 25th of August 2017. Return land gas and groundwater monitoring was conducted over three weekly visits between the 1st and the 15th of September 2017.

The scope of the ground investigation, including the location, scheduled depth and type of exploratory hole undertaken was determined by Arcadis Consulting (UK) Ltd and is summarised in Table 3-1.

The ground investigation methods were undertaken in general accordance with the principles set out in BS EN 1997-2:2005 [7] and with the general practice described in BS5930:2015 [8]. The geo-environmental aspects of the ground investigation complied with the general requirements of BS 10175:2011 [9].

Table 3-1 Initial ground investigation scope

Location ID	Hole Type	Scheduled Depth (m)	Requirements
BH101	RC	10.0	Determine thickness of engineering soils and rock; identify groundwater level; collect representative samples of strata and undertake <i>in situ</i> tests
BH101A	ОН	10.0	Undertake variable head testing above groundwater level identified in adjacent RC hole
BH102	RC	10.0	Determine thickness of engineering soils and rock; identify groundwater level; collect representative samples of strata and
BH103	RC	10.0	undertake <i>in situ</i> tests
BH103A	ОН	10.0	Undertake variable head testing above groundwater level identified in adjacent RC hole
BH104	RC	10.0	Determine thickness of engineering soils and rock; identify groundwater level; collect representative samples of strata and undertake <i>in situ</i> tests
BH104A	ОН	10.0	Undertake variable head testing above groundwater level identified in adjacent RC hole
BH105	RC	10.0	Determine thickness of engineering soils and rock; identify groundwater level; collect representative samples of strata and undertake <i>in situ</i> tests
WS101	DS	5.0	Determine thickness of engineering soils; collect representative
WS102	DS	5.0	samples of strata and undertake <i>in situ</i> tests
WS103	DS	5.0	
WS104	DS	5.0	
WS105	DS	5.0	

Location ID	Hole Type	Scheduled Depth (m)	Requirements				
WS106	DS	5.0	Determine thickness of engineering soils; collect representative				
WS107	DS	5.0	samples of strata and undertake <i>in situ</i> tests				
WS108	DS	5.0					
WS109	DS	5.0					
WS110	DS	5.0					
WS111	DS	5.0					
WS112	DS	5.0					
TP101	TP	2.50					
TP102	TP	2.50	Determine thickness of engineering soils; undertake large scale				
TP103	TP	2.50	soakaway testing; collect representative samples of strata and undertake <i>in situ</i> tests				
TP104	TP	2.50					
TP105	TP	2.50	Determine thickness of engineering soils; collect representative samples of strata and undertake <i>in situ</i> tests				
TP106	TP	2.50					
TP107	TP	2.50	Determine thickness of engineering soils; undertake large scale				
TP108	TP	2.50	soakaway testing; collect representative samples of strata and undertake <i>in situ</i> tests				
TP109	TP	2.50					
TP110	TP	2.50					
TP111	TP	2.50	Determine thickness of engineering soils; collect representative samples of strata and undertake <i>in situ</i> tests				
TP112	TP	2.50	Determine thickness of engineering soils; undertake large scale soakaway testing; collect representative samples of strata and undertake <i>in situ</i> tests				
TP113	TP	2.50	Determine thickness of engineering soils; collect representative samples of strata and undertake <i>in situ</i> tests				
HD101	HTP	1.20	Determine thickness of engineering soils; collect representative				
HD102	HTP	1.20	samples of strata and undertake <i>in situ</i> tests				
HD103	HTP	1.20					

Notes
TP = trial pitting, HTP = hand excavated trial pit, DS = dynamic sampling, RC = rotary core drilling, OH = open hole drilling

The investigation works were carried out under the supervision of a suitably experienced ground engineer who undertook the logging and reporting of the exploratory holes and *in situ* testing.

3.2 Exploratory Holes

3.2.1 Exploratory Hole Locations

The co-ordinates and elevations of the exploratory hole locations were obtained by the Arcadis supervising engineer using a Trimble VRS NOW GPRS system; with an accuracy of +/-50 mm.

Drawing UA008926-43-GLR-DWG-0001 presented in Appendix A displays the locations of the asconstructed exploratory holes while the co-ordinates and elevation of the ground surface at each exploratory hole are given on the individual logs. The full logs can be seen in Appendix C.

3.2.2 Investigation Methodology

The following methods and techniques were undertaken to construct the exploratory holes. The completed scope of investigation is summarised in Table 3-2 below.

Details of the methods of investigation and associated standards adopted are presented in Appendix B; the exploratory hole records are presented in Appendix C, a key to the notation and symbols used on the logs is presented in Appendix B.

Table 3-2 Summary of completed exploratory holes

Location ID	Hole Type	Start Date	End Date	Final depth (m)	Comment	Termination Reason
BH101	RC	23/08/2017	23/08/2017	10.00	Groundwater not encountered. Installation details: Raised cover with gas bung, GL - 6.00m plain pipe, 6.00 - 10.00m slotted pipe. Backfill details: GL - 0.10m concrete, 0.10 - 5.50m bentonite, 5.50 - 10.00m gravel.	Scheduled depth
BH101A	ОН	-	-	-	Abandoned due to groundwater not being encountered in BH101.	n/a
BH102	RC	24/08/2017	24/08/2017	10.00	Groundwater not encountered. Installation details: Flush cover with gas bung, GL - 7.00m plain pipe, 7.00 - 10.00m slotted pipe. Backfill details: GL - 0.10m concrete, 0.10 - 6.50m bentonite, 6.50 - 10.00m gravel.	Scheduled depth
BH103	RC	15/08/2017	17/08/2017	10.00	Groundwater encountered at 1.80m rising to 1.70m after 20 mins. Installation details:	Scheduled depth

Location ID	Hole Type	Start Date	End Date	Final depth (m)	Comment	Termination Reason
					Raised cover with gas bung, GL - 4.00m plain pipe, 4.00 - 10.00m slotted pipe.	
					Backfill details: GL - 0.10m concrete, 0.10 - 3.50m bentonite, 3.50 - 10.00m gravel	
BH103A	ОН	-	-	-	Abandoned due to shallow groundwater being encountered in BH103.	n/a
BH104	RC	21/08/2017	21/08/2017	9.95	Groundwater encountered at 4.00m, rising to 3.80m after 20 mins. Installation details: Raised cover with gas bung, GL - 2.00m plain pipe, 2.00 - 9.95m slotted pipe. Backfill details:	Scheduled depth
					GL - 0.10m concrete, 0.10 - 1.50m bentonite, 1.50 - 9.95m gravel Abandoned due to shallow	
BH104A	ОН	-	-	-	groundwater being encountered in BH104.	n/a
					Groundwater encountered at 4.20m, rising to 4.00m after 20 mins.	
BH105	RC	22/08/2017	22/08/2017	10.00	Installation details: Flush cover with gas bung, GL - 2.00m plain pipe, 2.00 - 10.00m slotted pipe.	Scheduled depth
					Backfill details: GL - 0.10m concrete, 0.10 - 1.50m bentonite, 1.50 - 10.00m gravel	
WS101	WS	16/08/2017	16/08/2017	3.00	Groundwater not encountered.	Refusal – soils too dense to penetrate
WS102A	WS	17/08/2017	17/08/2017	0.3	Groundwater not encountered.	Rockhead
WS102B	WS	17/08/2017	17/08/2017	0.20	Groundwater not encountered.	Rockhead

Location ID	Hole Type	Start Date	End Date	Final depth (m)	Comment	Termination Reason
WS103	WS	15/08/2017	15/08/2017	5.00	Groundwater seepage encountered at 2.50m.	Scheduled Depth
WS104A	WS	17/08/2017	17/08/2017	0.30	Groundwater encountered at 0.30m, rising to 0.20m after 20 mins.	Refusal – soils too dense to penetrate
WS104B	WS	17/08/2017	17/08/2017	0.15	Groundwater encountered at 0.15m, rising to 0.10m after 20 mins.	Refusal – soils too dense to penetrate
WS104C	WS	17/08/2017	17/08/2017	4.00	Groundwater seepage encountered at 3.90m.	Refusal – soils too dense to penetrate
WS105	WS	14/08/2017	14/08/2017	2.85	Groundwater seepage encountered at 2.40m.	Refusal – soils too stiff to penetrate
WS106	WS	14/08/2017	14/08/2017	3.00	Groundwater seepage encountered at 1.90m.	Rockhead
WS107	WS	15/08/2017	15/08/2017	3.00	Groundwater encountered at 2.80m, rising to 2.00m after 20 mins.	Refusal – soils too dense to penetrate
WS108	WS	15/08/2017	15/08/2017	2.80	Groundwater seepage encountered at 2.40m.	Refusal – soils too stiff to penetrate
WS109	WS	16/08/2017	16/08/2017	3.00	Groundwater seepage encountered at 1.80m. Hole collapsed from 3.00m to 2.00m due to water strike.	Refusal – hole collapse
WS110	WS	16/08/2017	16/08/2017	3.00	Groundwater not encountered.	Refusal – soils too dense to penetrate
WS111	WS	17/08/2017	17/08/2017	0.60	Groundwater not encountered.	Refusal – soils too dense to penetrate
WS112	WS	16/08/2017	16/08/2017	3.50	Groundwater seepage encountered at 2.90m.	Refusal – soils too dense to penetrate

Location ID	Hole Type	Start Date	End Date	Final depth (m)	Comment	Termination Reason
TP101	TP	15/08/2017	15/08/2017	2.00	Large scale soakaway conducted.	Rockhead
TP102	TP	14/08/2017	14/08/2017	2.50	Large scale soakaway conducted.	Scheduled depth
TP103	TP	18/07/2017	18/07/2017	2.50	Large scale soakaway conducted.	Scheduled depth
TP104	TP	16/07/2017	16/07/2017	2.80	Large scale soakaway conducted.	Scheduled depth
TP105	TP	21/08/2017	21/08/2017	2.50	Large scale soakaway abandoned due to stability issues.	Scheduled depth
TP106	TP	22/08/2017	22/08/2017	2.50	Large scale soakaway conducted.	Scheduled depth
TP107	TP	15/08/2017	15/08/2017	2.70	Large scale soakaway conducted.	Scheduled depth
TP108	TP	17/08/2017	17/08/2017	2.00	Large scale soakaway conducted.	Rockhead
TP109	TP	21/08/2017	21/08/2017	2.30	Large scale soakaway conducted.	Scheduled depth
TP110	TP	22/08/2017	22/08/2017	2.50	Large scale soakaway conducted.	Scheduled depth
TP111	TP	15/08/2017	15/08/2017	2.10	Large scale soakaway abandoned due to land owner issue.	Rockhead
TP111A	TP	22/08/2017	22/08/2017	0.40	Large scale soakaway abandoned due to shallow refusal.	Rockhead
TP112	TP	16/08/2017	16/08/2017	1.60	Large scale soakaway conducted.	Rockhead
TP113	TP	17/08/2017	17/08/2017	3.10	Large scale soakaway abandoned due to made ground.	Obstruction
HD101	HTP	21/08/2017	21/08/2017	1.20	No visual or olfactory evidence of contamination.	Scheduled depth
HD102	HTP	21/08/2017	21/08/2017	1.20	No visual or olfactory evidence of contamination.	Scheduled depth
HD103	HTP	21/08/2017	21/08/2017	1.20	No visual or olfactory evidence of contamination.	Scheduled depth

Notes
TP = trial pitting, HTP = hand excavated trial pit, DS = dynamic sampling, RC = rotary core drilling

3.2.3 Dynamic Sampling

Dynamic sampling was completed using a track-mounted sampling rig capable of driving windowless sampling tubes using a hydraulic hammer drive head to advance window sample tubes into the ground.

The time to drive the sampling tubes was recorded together with a description of the recovered materials by the supervising engineer or the lead driller.

Photographs of the materials recovered are presented with the appropriate hole log. To enable a representative photographic record, the samples were split prior to the photograph and subsequently destructively logged.

Due to the method of investigation, the materials recovered within the sampler apparatus were generally disturbed and were assessed as complying with Class 3 to Class 5 of BS EN 22475-2. Sub-samples of the material recovered in the liners were taken to enable representative laboratory testing. Generally small disturbed samples were taken at each change in stratum and at depths deemed appropriate by the supervising engineer.

Standard penetration tests (SPT) were undertaken using the track mounted rig at 1.0 m centres, and 1.5 m centres below 5.0m until the termination depth of the hole. Cone penetration tests (CPT) were undertaken where SPTs were deemed inappropriate.

3.2.4 Rotary Drilling

Rotary core drilling was undertaken using a track mounted multi-utility drilling rig. The drilling used standard PWF double-tube core barrels with a T6-116 type of bit and casing to produce core of 116 mm diameter. The boreholes were advanced using a compressed air flush.

Where the specified core recovery was not achieved, the length of core run was reduced on subsequent core runs until recovery improved.

Recovered cores were retained in appropriately sized semi-rigid plastic liner and placed in wooden core boxes for transport and logging. Photographs of each core box showing the recovered cores are presented with the appropriate rotary borehole log.

Sub-samples of core were removed from the core runs at intervals specified by Arcadis Consulting (UK) Ltd for subsequent laboratory testing, the location of the sub samples was indicated by placing wood sections to represent the core removed.

3.2.5 Trial Pitting/Trial Trenches

Trial pits (TP) were undertaken using a mechanical excavator. Hand excavated pits (HTP) were conducted with hand tools.

For the machine excavated pits, a JCB 3CX backhoe wheeled excavator was used and pits were entirely logged from the surface and arisings.

Samples of the material recovered in the trial pits were taken to enable representative laboratory testing. Generally small disturbed samples were taken at each change in stratum and at 0.5 m intervals thereafter in clay soils; and bulk samples were taken at 1 m intervals where the sand and gravel content of the soil was assessed as significant.

Photographic records of the trial pit elevation and arisings were taken and are presented with the associated trial pit log.

3.3 In situ Testing

3.3.1 Penetration Testing

3.3.1.1 Standard Penetration Tests

Standard penetration tests (SPT) were carried out as required in the investigation scope and in accordance with the methods given in the standard procedures presented within Appendix B. Generally, tests were undertaken at regular intervals throughout the borehole to provide a profile of the soil's resistance with depth and a disturbed soil samples was recovered from the SPT split-spoon tool or a disturbed sample was taken over the range of the test interval.

A summary of the SPT equipment used at each location is presented in Table 3-3.

Table 3-3 Test Hammer Calibrations

Location ID	SPT Hammer Reference No.	Energy Efficiency Ratio, E _r %	Comment
BH101-105	AR1704	68	
WS101-113	DT15183 17	55	

3.3.2 Hydraulic Tests

3.3.2.1 Water Permeability Tests in Open Systems

Permeability tests were carried out in those borehole installations listed in Table 3-4. The tests were carried out in general accordance with the requirements and methods given in BS EN ISO 22282-1:2012 [10] and BS EN ISO 22282-2:2012 [11]. Data sheets presenting the test information are presented with the corresponding exploratory hole record within Appendix C. The tests adopted either the Falling Head (FH) or Rising Head (RH) configuration as noted below.

Table 3-4 Summary of open system variable head permeability tests

Location ID	Test Type	Test Section top (m)	Test Section base (m)	Permeability k (ms ⁻¹⁾	Comment/limitations
BH101	FH	6.00	10.00	n/a	Test abandoned due to inability to produce head of water
DUAGO	FIL	4.00	40.00	1.22 x 10 ⁻⁵	Tests carried out in
BH103	FH 4.00	4.00	10.00	4.57 x 10 ⁻⁶	temporary standpipe

				5.35 x 10 ⁻⁶			
BH104	1.01 x 10 ⁻⁶		Tests carried		Tests carried out in		
БП 104	FH	2.00	9.95	4.77 x 10 ⁻⁷	temporary standpipe		
PU 105	FH		2.24 x 10 ⁻⁷		00 10.00	2.24 x 10 ⁻⁷	Tests carried out in
BH 105	ГП	2.00	10.00	1.28 x 10 ⁻⁷	temporary standpipe		
WS112	FH	1.00	3.50	2.49 x 10 ⁻⁸	Test carried out in temporary standpipe		

3.3.2.2 Soakaway Tests

The soil infiltration rate was determined by conducting a soakaway tests in accordance with the methodology described in BRE 365 [4]. The tests were conducted in trial pits dug to the anticipated soakaway depth. Summary information of the tests is presented Table 3-5 while detailed test sheets are presented with the relevant trial pit log in Appendix C.

Table 3-5 Summary of trial pit soakage tests

Location ID	Depth of pit (m)	Time to empty (minutes)	Soil Infiltration Rate <i>f</i> (ms ⁻¹⁾	Comment/limitations
TP101	2.0	50	1.44 x 10 ⁻⁴	Test pit filled only once due to time constraints
TP102	2.5	>240	n/a	Cannot be calculated due to lack of soakage
TP103	2.50	>120	n/a	Cannot be calculated due to lack of soakage
TP104	2.80	>240	n/a	Cannot be calculated due to lack of soakage

TP106	2.50	>240	n/a	Cannot be calculated due to lack of soakage
TP107	2.70	>240	n/a	Cannot be calculated due to lack of soakage
TP108	2.0	>240	8.69 x 10 ⁻⁶	25% not attained, results are extrapolated
TP109	2.50	>240	n/a	Cannot be calculated due to lack of soakage
TP110	2.50	>240	4.15 x 10 ⁻⁶	25% not attained, results are extrapolated
TP112	1.60	60	4.90 x 10 ⁻⁵	Test pit filled only twice due to
	1.50	120	3.58 x 10 ⁻⁵	time constraints

3.3.3 VOC Head Space Screening

The presence of Volatile Organic Compounds (VOC) within the ground was determined using a photoionization detector (PID) to detect the 'headspace' vapours emitted by the compounds. The method is applicable to a wide range of compounds that have sufficiently high volatility to be effected liberated from the soil or water matrix in normal temperature and pressure ranges.

The headspace test was undertaken on the freshly extracted soil core sample at regular intervals of 1.0 m by placing a small amount of material into a screw-top glass jar so that the jar was not more than half-full. The jar opening was covered with an aluminium foil sheet and the lid screwed on to form an air-tight seal. The sample and jar were then shaken for about 15 seconds to break-up and disperse the soil before resting the sample for about 5 minutes.

To assess the headspace vapour, the jar lid was removed and the PID inlet tube was inserted through the foil into the headspace area. The PID reading recorded was the highest response observed in the first 10 seconds. The screening results are presented on the relevant exploratory holes logs within Appendix C.

The testing was undertaken using a MiniRAE 2000 PID with a 10.6 eV lamp, which was calibrated regularly throughout the day.

3.4 Installations and Post-Fieldwork Monitoring

3.4.1 Installations

Installations to enable long term land gas and / or groundwater monitoring of the site were constructed in those boreholes selected by Arcadis Consulting (UK) Ltd and the details are summarised in Table 3-6 and are also provided on the relevant borehole logs.

Table 3-6 Summary exploratory hole installations

Location ID	Installation Type	Response Zone Top m bgl	Response Zone Base m bgl	Comment/limitations
BH101	SP50	6.00	10.00	Raised cover with gas bung, GL - 6.00m plain pipe, 6.00 - 10.00m slotted pipe.
BH102	SP50	7.00	10.00	Flush cover with gas bung, GL - 7.00m plain pipe, 7.00 - 10.00m slotted pipe.
BH103	SP50	4.00	10.00	Raised cover with gas bung, GL - 4.00m plain pipe, 4.00 - 10.00m slotted pipe.
BH104	SP50	2.00	9.95	Raised cover with gas bung, GL - 2.00m plain pipe, 2.00 - 9.95m slotted pipe.
BH105	SP50	2.00	10.00	Flush cover with gas bung, GL - 2.00m plain pipe, 2.00 - 10.00m slotted pipe.

Notes: SP50 = 50 mm ID standpipe

3.4.2 Post-fieldwork Monitoring

Post-field work monitoring was undertaken on separate visits on the 31st of August, 8th of September and 15th of September 2017. In all, three weekly visits to the site were made to record land gas emissions and groundwater levels.

During the first monitoring visit (31/08), after completion of the land gas emission monitoring, all wells were purged by removing three well volumes of groundwater and *in situ* groundwater monitoring and sampling was undertaken.

Where installations were purged dry, monitoring and sampling was conducted on groundwater recovered following recharging of groundwater in installations. Parameters measured during *in situ* monitoring were pH, dissolved oxygen, conductivity and redox potential.

On the second visit (07/09), after completion of the land gas emission monitoring, rising and falling head testing was conducted within the standpipes.

The results of the land gas/ groundwater monitoring and variable head testing are presented within Appendix E.

4 LABORATORY TESTING

4.1 General

Geotechnical and geo-environmental chemical testing was undertaken on selected samples obtained from the exploratory holes. The testing was scheduled by the geotechnical and/or geo-environmental engineer and the testing was undertaken by an Arcadis approved testing laboratory.

4.2 Geotechnical Laboratory Testing

The geotechnical tests detailed in Table 4-1 were carried out in accordance with either BS1377:1990: Parts 1 to 8 [14]; BRE SD 1:2005 [5]; or other methods as listed in Table 4-1. The complete results of the geotechnical laboratory testing are presented in Appendix F.

Table 4-1 Summary of geotechnical test data

Test	Method	No of Determinations
Moisture content	BS1377 Pt2-3.2	32
4-point liquid and plastic limit	BS 1377 Pt2-4.3 & 5.3	17
Particle Size Distribution - Wet sieving	BS1377 Pt2-9.2	16
Particle Size Distribution - Sedimentation	BS1377 Pt2-9.4	6
Dry Den/MC (2.5kg Rammer Method 1 Litre Mould)	BS1377 Pt4-3.3	6
pH, water soluble sulphate; total sulphate, total sulphur, chloride, nitrate, magnesium	BS1377 Pt3 & BRE CP2/79	12

4.3 Geo-Environmental Laboratory Testing

Geo-environmental tests were undertaken on soil, groundwater and prepared leachate specimens obtained from the samples collected from the site. Testing was carried out for the contaminants detailed in

Table 4-2, Table 4-3 and Error! Reference source not found...

The results of the chemical laboratory testing are presented in Appendix G. Details of the test methodology is presented with the test results.

Table 4-2 Summary of geo-environmental test data – soil matrix

Test type	Method	No of Determinations
Metals (As, B, Cr, Cd, Cu, Pb, Hg, Ni, Se, Zn),, pH, Cyanide Free & Total	Induced Coupled Plasma Optical Emission Spectroscopy (ICP-OES)	34
Speciated Polycyclic Aromatic Hydrocarbon compounds (PAH)	Gas Chromatography -Mass Spectrometry (GC-MS)	34
Total Petroleum Hydrocarbon Criteria Working Croup (TPH CWG)	Gas Chromatography – Flame Ionisation Detector (GC-FID)	16
VOCs & SVOCs		1
Fractional Organic Carbon		34
Phenol (total), Cresol, Chlorinated Phenols		34

Table 4-3 Summary of geo-environmental test data – groundwater matirx

Test type	MATROC	No of Determinations
Metals (As, B, Cr, Cd, Cu, Pb, Hg, Ni, Se, Zn), pH, Speciated PAH, Cyanide Free & Total		7
PAHs	Gas Chromatography –Mass Spectrometry (GC-MS)	7
TPH CWG	Gas Chromatography – Flame Ionisation Detector (GC-FID)	7

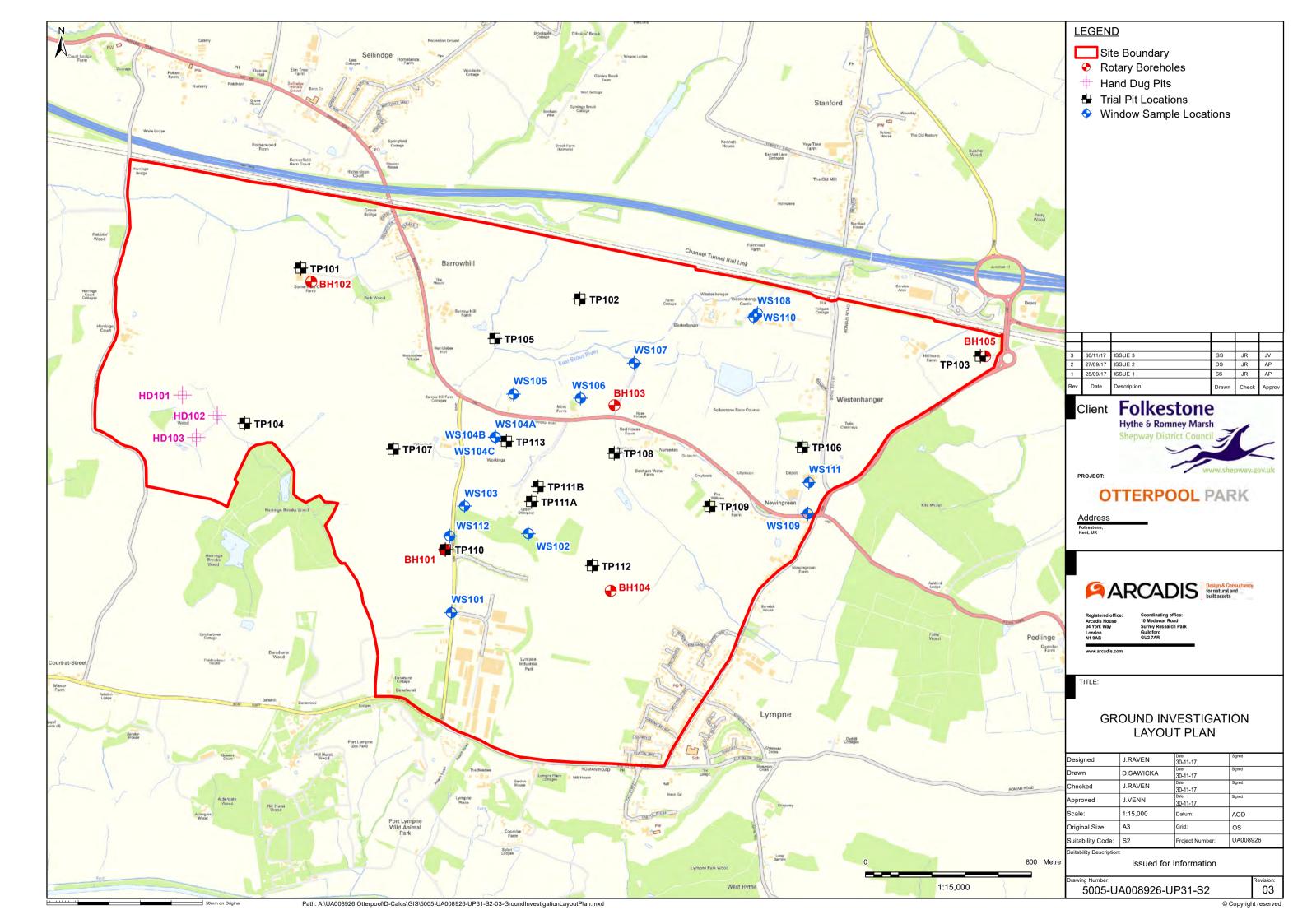
5 REFERENCES

General References

- British Geological Survey. 1990. Folkstone & Dover. England and Wales Sheet 305 & 306. Bedrock and Drift Deposits. 1:50 000. BGS Keyworth, Nottingham.
- 2. TRL. 2004. Dynamic cone penetrometer tests and analysis. TRL Technical Report PR IN 277-04. Transport Research Laboratory, Crowthorne, England.
- 3. Jones C R and Rolt J. 1991. Operating instructions for the TRL dynamic cone penetrometer. 2nd Edition Information Note. Transport Research Laboratory, Crowthorne.
- 4. Building Research Establishment. 2016. Soakaway Design. BRE Digest DG365. BRE, Watford.
- Building Research Establishment. 2005. Concrete in aggressive ground. BRE Special Digest 1. 3rd Edition. BRE, Watford.

National Standards

- BS EN 1997-1. 2004. Eurocode 7: Geotechnical Design. Part 1 General Rules. British Standards Institution, 2013 (revised text).
- 7. BS EN 1997-2. 2007. Eurocode 7: Geotechnical Design. Part 2 Ground Investigation and testing. British Standards Institution, 2010 (revised text).
- 8. BS 5930. 2015. Code of practice for ground investigations. British Standards Institution.
- 9. BS 10175. 2011. Investigation of potentially contaminated sites Code of practice. British Standards Institution.
- 10.BS EN ISO 22282-1:2012. Geotechnical investigation and testing Geohydraulic testing. Part 1: General Rules. British Standards Institution.
- 11.BS EN ISO 22282-2:2012. Geotechnical investigation and testing Geohydraulic testing. Part 2: Water permeability tests in a borehole using open systems. British Standards Institution.
- 12.BS EN ISO 22282-5:2012. Geotechnical investigation and testing Geohydraulic testing. Part 5: Infiltrometer tests. British Standards Institution.
- 13.BS EN ISO 22282-6:2012. Geotechnical investigation and testing Geohydraulic testing. Part 6: Water permeability tests in a borehole using closed systems. British Standards Institution.
- **14**.BS 1377. 1990. Method of test for soils for civil engineering purposes. Published in 9 Parts. British Standards Institution,
- 15.BS EN ISO 17892-1: Geotechnical investigation and testing Laboratory testing of soil Determination of water content. British Standards Institution.
- 16.BS EN ISO 17892-2: Geotechnical investigation and testing Laboratory testing of soil Determination of bulk density. British Standards Institution.


Internet References

- 17.British Geological Survey: http://www.bgs.ac.uk/data/mapViewers/home.html. Accessed Sept 2017.
- 18.Environment Agency: http://maps.environment-agency.gov.uk/wiyby/wiybyController?ep=maptopics&lang=_e. Accessed Sept 2017.

APPENDIX A

DRAWINGS

Drawing 5005-UA008926-UP31-S2-03-Ground Investigation Layout Plan

APPENDIX B

STANDARD PROCEDURES

B0 General Principles

This ground investigation was undertaken in general accordance with the principles of BS EN 1997-1 [1] and BS EN 1997-2 [2] and the advice given in BS5930:2015 [8], which, provides complimentary guidance on the application of the primary standards. Where the requirements of the ground investigation specification differ from these primary standards, the investigation methodology was adapted as required and specific notes regarding methods and techniques employed were made in the appropriate report sections.

B1 Buried Services

Service clearance was undertaken in accordance with Arcadis' common operating practice COP SA1. This document details the methods and safe working practices used to undertake excavations safely. Prior to breaking ground, services plans were consulted, and the area scanned using a Cable Avoidance Tool (CAT) with detected signals marked on the ground. For all investigation positions, other than for machine excavated trial pits, hand excavated inspection pits are completed to 1.20 m bgl prior to the use of drilling and boring plant.

B2 Sampling requirements

The selection of sample types and sampling techniques has been chosen to take account of the soil fabric, size and quality of sample required based on whether the soils mass properties or the intact material properties of the ground are to be determined in subsequent laboratory tests. BS EN ISO 22475-1 [4] describes three generic sample groups that are:

- a. Sampling by drilling. Generally a disturbed sample recovered from the drilling tool or digging equipment, typically meeting Class 3 to Class 5 requirements, with the recovered material being stored in bulk bags or sealed jar or tub containers.
- b. Sampling by sampler. Typically referred to as open tube or drive sampling in which a tube with a sharp cutting edge is driven into the ground either by static thrust or dynamically driven to give a relatively undisturbed sample of Class 1 or Class 2 but may result in a Class 3 sample.
- c. Block sampling. Cylindrical large diameter samples or cuboid hand-cut samples usually relatively undisturbed Class 1 and Class 2.

The open-tube sampling equipment used on the site was of a type and design that conformed to BS EN ISO 22475-1. For the purpose of this ground investigation block sampling was not required.

Generally samples were assessed on site and any unexpected deterioration in sample quality was reported to the ground engineer by the lead drilling technician.

Sufficient and representative samples were taken to allow the geo-mechanical properties of the ground to be adequately characterised and to enable the sequence of soil strata to be described by an engineering geologist or geotechnical engineer.

Where samples have been taken for chemical tests the drilling method attempted to adopt dry drilling over the sampling range that generally was achieved by the use of drill casing to separate and isolate the upper soil layers and exclude groundwater. Cross-contamination was further reduced by regular cleaning of sampling tools. Sample integrity was maintained by sealing samples immediately on collection and storing the samples in a temperature controlled cool box. Samples were despatched from the site at the end of the shift on which they were collected or as

required in the project specification. Details of best practice storage, preservation and decontamination measures undertaken are given below:

Task	Soil	Groundwater	Ground Gas
Storage	Glass jars and vials supplied by the laboratory were used for the collection of soil samples to be analysed for volatile compounds. Plastic one-litre tubs were used to collect soil samples for metals analysis.	Glass vials supplied by the laboratory were used for the collection of samples to be analysed for volatile compounds. Samples to be analysed for lower volatility compounds were stored in laboratory prepared glass bottles.	1.4L Canisters supplied by the laboratory.
Preservation	Filling of sample containers as headspace and low storage te potential for volatilisation and I hydrocarbon compounds prior	biodegradation of petroleum	Not required.
Decontamination	Disposable gloves were worn and changed between sample collection to prevent cross-contamination.	Groundwater samples were collected using dedicated disposable tubing / bailers, that were changed between monitoring well locations in order to prevent crosscontamination.	Disposable gloves were worn and changed between sample collection to prevent cross contamination.
Transport	and analytical requests were r	ample boxes provided by the labor ecorded on the laboratory chain o ing to laboratory for analysis. Sar sampling.	of custody form included

B3 Sample description

Sample description was undertaken by the Arcadis site geologist in accordance with BS 5930: 2015. The descriptions of the individual samples were used to identify the sequence of strata at the exploratory hole location and from which representative exploratory hole logs were drawn.

B4 In situ testing

In situ geotechnical tests were undertaken taking account of the investigation scope and requirement to attain the appropriate parameters required in the geotechnical design. The tests were undertaken in accordance with the requirements of the relevant parts of BS EN ISO 22476 [5, 6, 7] and other methods as follows:

Standard penetration testing

Standard penetration tests were carried out in accordance with BS EN ISO 22476-3, BS EN 1997-2 and the national Annex to BS EN 1997-2. The test records are presented on the borehole logs as blow counts for each increment with the N-value as the total number of blows of the four main test increments.

Where the N-value exceeds a total of 50 blows, the test reports the penetration in millimetres for the last test increment recorded, and the N value is indicated as greater than 50,

e.g. 4,5/12,14,18, 6 for 10 mm

indicates that the seating blows (4 and 5) were completed and that the test terminated in the 4th increment after penetrating 10 mm.

Where the seating blows exceeded 25 blows for less than 150 mm; the test was stopped and the rods remarked after which, the main drive was continued. The test is then reported as the number of blows in each seating drive for the recorded penetration with the results of the main drive given as above,

e.g. 14/11 for 45 mm/12,14,16, 8 for 10 mm.

In certain circumstances where groundwater in-flow may affect the test, particularly in fine sand or silt, low SPT blow counts may be recorded. Where the SPT blow count was very low, N values of 5 or less, the test was, at the discretion of the site engineer, continued for a further 300 mm, recording blows for each 75 mm increment. **This is not** a standard penetration test value, it does however give an indication of potential disturbance to the ground.

B5 Data transfer format

The data collated during the ground investigation has been organised and managed using the "AGS data format" that allows data transfer between different disciplines and organisations in accordance with BS 8574 [9].

B6 References

- 1. BS EN 1997-1. 2004. Eurocode 7: Geotechnical Design. Part 1 General Rules. British Standards Institution, 2013 (revised text).
- BS EN 1997-2. 2007. Eurocode 7: Geotechnical Design. Part 2 Ground Investigation and testing. British Standards Institution, 2010 (revised text).
- 3. BS EN ISO 22282-1:2012. Geotechnical investigation and testing Geohydraulic testing. Part 1: General Rules. British Standards Institution.
- 4. BS EN ISO 22475-1. Geotechnical investigation and testing Sampling methods and groundwater measurements Part 1 Technical principles for execution.
- 5. BS EN ISO 22476-1:2015. Geotechnical investigation and testing Field testing Part 1: Electrical cone and piezocone test. British Standards Institution
- BS EN ISO 22476-2. Geotechnical investigation and testing Field testing Part 2: Dynamic Probing. British Standards Institution
- 7. BS EN ISO 22476-3 2005. Geotechnical investigation and testing Field testing Part 3: Standard penetration test. British Standards Institution
- 8. BS 5930: 2015. Code of practice for ground investigation. British Standards Institution.
- 9. BS 8574. Code of practice for the management of geotechnical data for ground engineering projects.
- 10. BS 1377-9. 1990. Methods of test for soils for civil engineering purposes. Part 9: In-situ tests. British Standards Institution.
- 11. TRL. 2004. Dynamic cone penetrometer tests and analysis. TRL Technical Report PR IN 277-04. Transport Research Laboratory, Crowthorne, England.

B7 Exploratory Hole Key

Key to Exploratory Hole Symbols and Abbreviations

SAMPLE TYPES

B Bulk disturbed sample ES Environmental soil sample U Undisturbed sample

C Core sample EW Environmental water sample UT Undisturbed thin wall sample

CBR-D Disturbed sample from CBR test area G Gas sample W Water sample

CBR-U Undisturbed sample from CBR test area L Liner sample

D Small disturbed sample SPT SPT split spoon sample

IN-SITU TESTING

SPTs Standard Penetration Test (using a split spoon sampler)
SPTc Standard Penetration Test (using a solid 60 degree cone)

N Recorded SPT 'N' Value *

-/- Blows/Penetration (mm) after seating blows totalling 150 mm

MX Mexi Probe Test (records CBR as %)

HV Hand Shear Vane Test (undrained shear strength quoted in kPa)

PP Pocket Penetrometer Test (kg/m³)

() Denotes residual test value

PID Photo Ionisation Detector (ppm) *

Kf/Kr Permeability Test (f = falling head, r = rising head guoted in ms⁻¹)

HPD High Pressure Dilatometer Test (pressure meter)

PKR Packer / Lugeon Permeability Test

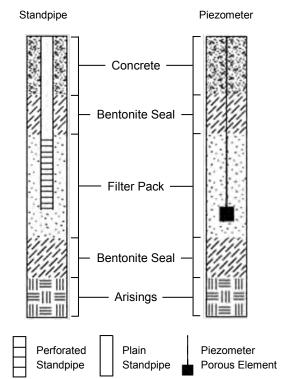
CBR California Bearing Ratio Test

ROTARY CORE DETAILS

TCR Total Core Recovery, %
SCR Solid Core Recovery, %

SCR Solid Core Recovery, %

RQD Rock Quality Designation (% of intact core >100 mm)


FI Fracture Spacing (average fracture spacing; in mm, over indicated length

of core) * *

NI Non-Intact Core

AZCL Assumed Zone of Core Loss

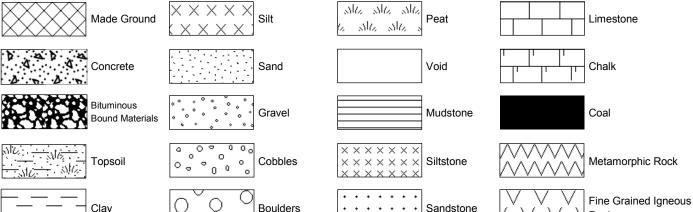
INSTALLATION & BACKFILL DETAILS

STRATUM BOUNDARIES

Unit boundary

Rock

GROUNDWATER


 \searrow

Groundwater strike

Standing water level after 20 minutes; 1st, 2nd etc (number denotes level order)

STRATA LEGENDS - Note: Composite strata types are shown by combining symbols

^{*} Where a single value is quoted this is the uncorrected 'N' value for a full 300 mm test drive following a seating drive of 150mm. Where the full test drive penetration is not achieved the number of blows is quoted for the penetration below the test total of 300mm, e.g.: 50/75.

APPENDIX C

EXPLORATORY HOLE LOGS

ARCADIS Rotary Borehole Log

Otterpool Park

Shepway District Council

Project No. UA008926 Easting (OS mE) 610950.08

Ground Level (mAOD) 101.23 Northing (OS mN) 136019.06

Start Date 23/08/2017 End Date 23/08/2017

Scale **1:50** Sheet 1 of 1

Onepway																	_	_
SAMPLE	ES		TESTS		RILL LC)G	- S	PROGF	RESS			STRAT	Α					l
Depth	Type/ No.	Type/ No.	Results	TCR% SCR% RQD%	ave	Flush Rtn%	Water Strikes	Date Time	Casing Water			scription			Legend	Depth (Thickness	Level	Insta Back
-					,					TOPSOIL; Gr	rass over brown	wn slightl	y gravelly san	dy clay	116:	0.10	101.13	.
- 0.30	ES1									with rootlets. Firm brown sli	ightly gravelly	sandy C	LAY Sand is	fine to			1	
- 0.50	ES2									coarse. Grave	el is angular,	fine to co	arse quartz.	mio to			İ	
0.50 - 0.75	B3									[HEAD DEPO	SITS]						+	ľ/1 ľ
0.75 - 1.00	B4															(1.50)	1	
- - 1.00	ES5															(1.50)	‡	KA Ł
		SPT(S)	N=11 (1,1/2,3,3,3)														1	21
-		01 1(0)	11 (1,112,0,0,0,0)														+	K4 F
-																	Ŧ	/H:
-										Medium dense	e brownish gr	reen claye	ey fine to coar	se		1.60	99.63	Y / /
										SAND. Locall [HEAD DEPO	ly trending to	very san	dy CLAY.			1	‡	
- 2.00 - 2.00	D7 ES6	SPT(S)	N=29 (2,2/4,6,8,11)								0110]						†	
- 2.00	E30														+		+	
=																1	Ŧ	
-																1	‡	
																(2.40)	†	
- - 3.00	D9	SDT/S)	N=25 (2,2/6,4,7,8)												-		Ţ	
3.00	ES8	51.1(9)	(2,2/0,4,7,0)													1	+	
																1	1	
-																	‡	
															+	:	1	
																	+	
_										Loose to med	ium dense ve	llow and	hrown eliabtly	siltv		4.00	97.23	
										slightly gravel	ly fine to coar	rse SAND). Gravel is ar	ngular			‡	
										to subangular		e quartz	and sandston	e.			1	M
4.50	D11	SPT(S)	N=5 (1,2/1,1,2,1)							Residual soil. [SANDGATE I		1					t	
4.50	ES10									[0, 1, 1, 2, 0, 1, 2, 1		,				:	I	M
																	1	H
_																(2.00)	†	ra r
																:	1	
																:	Ŧ	K3 F
		SPT(S)	N=11 (2,1/2,2,3,4)														Ţ	
																	‡	
_																6.00	95.23	
										Medium stron	g to strong sli	ightly to n	noderately		H	0.00	35.25	
				70						weathered fra Fractures are	very closely t	to closely	spaced (30 -		Ĥ		1	l∴H
				70 48						100mm), and	appear in two	sets; su	bhorizontal op	en	H	1	‡	ŀ∴H
				33						rough and ste stepped to un		pvertical	open rough ar	na	H		‡	[∷H
										[HYTHE FOR					H	1	ł	
-				<u> </u>	-					l ow re	covery helow	7 00m di	ue to high inter	nsity of	THE		+	l:∴H
										LOWIE	DOIOW		pendicular fra		╟┼┼	1	1	ŀ∴∏
				56											ПП	1	‡	$ \cdot $
				13											H	1	†	
				0											Ħ,	1	+	K:H
					30										-	1	1	
					65 100										П	(4.00)	†	
					100										H	1	†	
															H	1	1	H
															HH	†	Ŧ	
																1	‡	
				0											H	-	1	
				0												1	†	$ \cdot $
															1	-	Ī	ĽªĦ
																1	‡	
																-	1	
															H	1	1	$ \cdot $
																10.00	91.23	النا
												1					1	
		CHNIQU		USH D			<u> </u>			SERVATIONS			E/CASING D				RADDE	
epth Top Depth 6 0.00 1.20		Type		o Rtn		sh Type Air Mist	Date/	ııme Stril	(e At Time	Elapsed Rise To	Casing Sealed	Hole Dia.	Depth Casir 5.50	ng Dia. [Depth	From	o V	olume (Iti
1.20 10.0		Rotary C										116	10.00					
							1											
Remarks							-					-						

1. Groundwater not encountered. 2. Installation details; Raised cover with gas bung, GL - 6.00m plain pipe, 6.00 - 10.00m slotted pipe. 3. Backfill details; GL - 0.10m concrete, 0.10 - 5.50m bentonite, 5.50 - 10.00m gravel. 4. Terminated at scheduled depth.

Otterpool Park

Shepway District Council

Project No. UA008926 Easting (OS mE) **610306.52** Ground Level (mAOD) 73.39 Northing (OS mN) 137311.61

Start Date **24/08/2017** End Date **24/08/2017**

Scale **1:50** Sheet 1 of 1

nepway									710000								=	-
SAMPLE	S		TESTS		RILL LC)G	- S	PROGE	RESS			STRATA	4					Τ.
Depth	Type/ No.	Type/ No.	Results	TCR% SCR% RQD%	FI (min ave max)	Flush Rtn%	Water Strikes	Date Time	Casing Water		Des	scription			Legeno	Depth (Thickness	Level	In Ba
				11111111						TOPSOIL; G	rass over bro	wn slightly	y gravelly sai	ndy clay	316	(0.20)	!	.₫.
0.00	F04									with rootlets.						(0.20) 0.20	73.19	9//
0.30	ES1									Firm brown s		Sand is fin	e to medium	•		å	1	1/
0.50	ES2									[HEAD DEPO	ردانی	Slightly g	ravelly below	0.50m.	⊤		†	1/
0.50 - 0.75 0.75 - 1.00	B3 B4											_ 5 7 5	,				+	1/
1.00	D-1															i	1	1/2
1.00	ES5																+	1/
1.20 - 2.00	В6	SPT(S)	N=7 (2,1/2,2,1,2)													(1.80)	‡	
		. ,	(,,,,,,,													1	†	13
																1	Ŧ	1/
																	İ	1/
																i	+	1/
2.00	ES7	SPT(S)	N=7 (1,1/2,1,2,2)													2.00	† _{71.39}	9/
.00 - 3.00	В8	(-)	(,,,,=,,,=,=,							Loose brown				SAND.		1	1	1/
										Local patches [HEAD DEPC	s or greenish	prown coa	arse Sand.			1	1	V.
										[,					(1.00)	†	
																(1.00)	Ţ	1/2
																:	1	1
2.00	FC0	ODT/O	N-0 (0.0/0.0.0.0)														70.00	1/
3.00	ES9	5P1(C)	N=9 (2,2/2,3,2,2)							Loose yellow	and brown sl	ightly silty	fine to coars	е		3.00	70.39	٧,
										SAND. Local			Residual soil.			:	†	1/
										[SANDGATE	FURIMATION	IJ				:	+	1
																:	†	
																(1.50)	+	
																. (1.50)	‡	1
4.00	D11	SPT(S)	N=7 (1,2/2,1,2,2)													1	+	1/
4.00	ES10															1	Ī	K,
																	t	1/
										Vany atiff bray	un aliabtlu aas	adı arayal	II. CLAV. Ca	nd in		4.50	68.89	9/
										Very stiff brow	vii siigriiiy sai • Gravel is a	ngular fine	ily CLAT. Sa e to coarse	nu is		1	1	
										mudstone an						1	+	1/2
		SPT(C)	N=35 (3,4/8,9,8,10)							[SANDGATE	FORMATION	1]					‡	1/
		(-)	(1, 11, 11, 11, 11, 11, 11, 11, 11, 11,													1	†	1/
																	Ī	K.
																	İ	1/
																1	+	1
															÷ : - :	(2.60)	1	1
																(=:)	+	1/2
																1	Ţ	1
															-	1	İ	1/
																	+	K.
6.50 6.50	D13 ES12	SPT(C)	N=29 (2,6/7,7,8,7)													1	‡	
0.00	LOIZ																+	
																1		14.3
																1	1	
																7 10	66 20	
										Medium stror					*	7.10	66.29	9
				100						weathered fra	actured grey r	nicritic LIN	MESTONE.			7.10	66.29	9
				100						weathered fra Fractures are	actured grey r very closely	nicritic LIN to closely	MESTONE. spaced (25 -		* * * * * * * * * * * * * * * * * * *	7.10	66.29	9
				100 90 87						weathered fra Fractures are 120mm), and rough and ste	actured grey r very closely appear in two apped, and su	nicritic LIN to closely o sets; sul	MESTONE. spaced (25 - bhorizontal o	pen	, , , ,	7.10	66.29	9
				90						weathered fra Fractures are 120mm), and rough and ste stepped to ur	actured grey revery closely appear in two epped, and sundulating.	nicritic LIN to closely o sets; sul	MESTONE. spaced (25 - bhorizontal o	pen	* *	7.10	66.29	9
				90						weathered fra Fractures are 120mm), and rough and ste	actured grey revery closely appear in two epped, and sundulating.	nicritic LIN to closely o sets; sul	MESTONE. spaced (25 - bhorizontal o	pen		7.10	66.29	9
				90						weathered fra Fractures are 120mm), and rough and ste stepped to ur	actured grey revery closely appear in two epped, and sundulating.	nicritic LIN to closely o sets; sul	MESTONE. spaced (25 - bhorizontal o	pen		7.10	66.29	9
				90						weathered fra Fractures are 120mm), and rough and ste stepped to ur	actured grey revery closely appear in two epped, and sundulating.	nicritic LIN to closely o sets; sul	MESTONE. spaced (25 - bhorizontal o	pen		7.10	66.29	9
				90	25					weathered fra Fractures are 120mm), and rough and ste stepped to ur	actured grey revery closely appear in two epped, and sundulating.	nicritic LIN to closely o sets; sul	MESTONE. spaced (25 - bhorizontal o	pen		-	66.29	9
				90	75					weathered fra Fractures are 120mm), and rough and ste stepped to ur	actured grey revery closely appear in two epped, and sundulating.	nicritic LIN to closely o sets; sul	MESTONE. spaced (25 - bhorizontal o	pen		7.10	66.29	9
				90 87 90 61						weathered fra Fractures are 120mm), and rough and ste stepped to ur	actured grey revery closely appear in two epped, and sundulating.	nicritic LIN to closely o sets; sul	MESTONE. spaced (25 - bhorizontal o	pen		-	66.29	9
				90 87	75					weathered fra Fractures are 120mm), and rough and ste stepped to ur	actured grey revery closely appear in two epped, and sundulating.	nicritic LIN to closely o sets; sul	MESTONE. spaced (25 - bhorizontal o	pen		-	66.29	9
				90 87 90 61	75					weathered fra Fractures are 120mm), and rough and ste stepped to ur	actured grey revery closely appear in two epped, and sundulating.	nicritic LIN to closely o sets; sul	MESTONE. spaced (25 - bhorizontal o	pen		-	66.29	9
				90 87 90 61	75					weathered fra Fractures are 120mm), and rough and ste stepped to ur	actured grey revery closely appear in two epped, and sundulating.	nicritic LIN to closely o sets; sul	MESTONE. spaced (25 - bhorizontal o	pen		-	66.29	9
				90 87 90 61	75					weathered fra Fractures are 120mm), and rough and ste stepped to ur	actured grey revery closely appear in two epped, and sundulating.	nicritic LIN to closely o sets; sul	MESTONE. spaced (25 - bhorizontal o	pen		-	66.29	9
				90 87 90 61 43	75					weathered fra Fractures are 120mm), and rough and ste stepped to ur [HYTHE FOR	actured grey revery closely appear in two epped, and sundulating.	nicritic LIN to closely o sets; sul ibvertical α	MESTONÉ. spaced (25 - bhorizontal o open rough a	pen and		-	66.29	9
				90 87 90 61 43	75					weathered fra Fractures are 120mm), and rough and ste stepped to ur [HYTHE FOR	actured grey revery closely appear in two appear in two apped, and sudulating.	nicritic LIN to closely o sets; sul ibvertical α	MESTONE. spaced (25 - spaced (2	pen and		-	66.29	9
				90 87 90 61 43	75					weathered fra Fractures are 120mm), and rough and ste stepped to ur [HYTHE FOR	actured grey revery closely appear in two appear in two apped, and sudulating.	nicritic LIN to closely o sets; sul ibvertical α	MESTONE. spaced (25 - spaced (2	ppen and		(2.90)		
				90 87 90 61 43	75					weathered fra Fractures are 120mm), and rough and ste stepped to ur [HYTHE FOR	actured grey revery closely appear in two appear in two apped, and sudulating.	nicritic LIN to closely o sets; sul ibvertical α	MESTONE. spaced (25 - spaced (2	ppen and		-	66.29	
	no -		ir	90 87 90 61 43	75 120					weathered fra Fractures are 120mm), and rough and ste stepped to ur [HYTHE FOR	actured grey revery closely appear in two appear in two apped, and sudulating.	nicritic LIN to closely o sets; sul libvertical of	MESTONE. spaced (25- spaced (25- spaced (26- spaced (2	induced actures.		(2.90)	63.39	9
		СНИІQІ		90 87 90 61 43 0 0 0	75 120					weathered fre Fractures are 120mm), and rough and ste stepped to ur [HYTHE FOR	actured grey revery closely appear in twepped, and sudulating. MATION]	v 9.00m di	MESTONE. spaced (25- spaced (25- spaced (25- spaced (26- spaced (2	induced actures.		(2.90)	63.39 R ADDE	9 ED
th Top Depth B	iase	Туре	From	90 87 90 61 43 0 0 0	75 120 ETAILS % Flu	sh Type	Date/		TER OB:	weathered fre Fractures are 120mm), and rough and ste stepped to ur [HYTHE FOR	actured grey revery closely appear in two appear in two apped, and sudulating.	v 9.00m du	MESTONE. spaced (25 - spaced (2	induced actures.		(2.90)	63.39 R ADDE	9
	ase		From - 1.20 10	90 87 90 61 43 0 0 0	75 120 ETAILS % Flu		Date/			weathered fre Fractures are 120mm), and rough and ste stepped to ur [HYTHE FOR	actured grey revery closely appear in twepped, and sudulating. MATION]	v 9.00m di	MESTONE. spaced (25- spaced (25- spaced (25- spaced (26- spaced (2	induced actures.		(2.90)	63.39 R ADDE	9 ED

1. Groundwater not encountered. 2. Installation details; Flush cover with gas bung, GL - 7.00m plain pipe, 7.00 - 10.00m slotted pipe. 3. Backfill details; GL - 0.10m concrete, 0.10 - 6.50m bentonite, 6.50 - 10.00m gravel. 4. Terminated at scheduled depth.

ARCADIS Rotary Borehole Log

Otterpool Park

Shepway District Council

Project No. UA008926 Easting (OS mE) 611768.10

Ground Level (mAOD) 70.30 Northing (OS mN) 136716.11

Start Date 15/08/2017 End Date 17/08/2017

Scale **1:50** Sheet 1 of 1

SAMPLE	ES		TESTS	DI	RILL LO)G	_ s	PROGF	RESS	STRATA				
Depth	Type/ No.	Type/ No.	Results		FI (min ave	Flush Rtn%	Water	Date Time	0:	Description	Legend	Depth (Thickness)	Level	Instal Backf
					,					TOPSOIL; Crop over soft brown sandy clay. Sand is fine to medium.	ALC:	(0.20) 0.20	70.40	4.
0.30 0.50 0.50 0.50 - 0.75	D3 ES2 B4									Very soft to soft greenish brown slightly sandy gravelly CLAY. Sand is fine to coarse. Gravel is subangular to angular, fine to coarse sandstone and quartz. [ALLUVIUM DEPOSITS]		(0.80)	70.10	
0.75 - 1.00	B5									Very gravelly below 0.80m.	<u> </u>			
- 1.00 1.00	D7 ES6									Firm becoming stiff brownish grey slightly gravelly sandy	-	1.00 -	- 69.30	
1.00	E30	SPT(S)	N=4 (1,1/1,1,1,1)							CLAY. Sand is fine to coarse. Gravel is angular, fine to coarse sandstone and limestone. [ALLUVIUM DEPOSITS]				
												-		
												(1.50)		71
- 2.00	D9	SPT(S)	N=19 (1,1/3,4,6,6)								==	_	-	21/
2.00	ES8													71
2.50 2.50	D11 ES10									Medium dense to dense greyish green slightly silty very		2.50 - (0.30)	- 67.80	\mathcal{I}
		SPT(S)	N>50 (25 for							gravelly fine to coarse SAND. Gravel is angular, fine to coarse limestone. Residual soil.		2.80	67.50	
_		()	20mm/50 for 55mm)							\[HYTHE FORMATION] /			_	$/ \cdot $
										Medium strong to strong moderately weathered fractured grey micritic LIMESTONE. Fractures are very closely to	世	<u> </u>		4
				75 53						closely spaced (40 - 170mm), and subhorizontal open]		71
				11						rough and stepped. [HYTHE FORMATION]		-	-	4
											HH			
											ш			
-					40 105							-	-	.: L
					170						ш] ;		∴⊟
] :		
				92							HH			
				84 71						Fractures are open to tight below 4.80m.				\cdots $+$
				' '								-	_	
											ш]		: Н
											HH			
										Fractures are very closely to closely, locally extremly	\vdash			
										closely spaced (10 - 80mm) below 5.50m.				\cdot H:
												_	_	.: П
				80 61	10 45					Band of completely weathered limestone from 6.10 -] :		∴⊟
				21	80					6.20m.		(7.20)		\cdot
											HH	` ` ;		
														\cdot H
										Band of completely weathered limestone from 6.80 - 7.00m.				.∴⊟
										Fractures are closely to medium spaced (70 - 210mm) below 7.00m.	Н			∴H
												1 :		\cdot H
				0.7							HH	-	-	
				97 89							ÌТ]		:H
				75							世] :		∴F
														∷∐
					70						Щ]		·H
					70 140					Completely weathered below 8.50.	++		-	
					210					Comp <u>letely weathered below 8.50.</u>	I] :		úН
											ш] :		.:∏
				33									-	∷⊟
				33							Щ	1 :		\cdot H
				33							++	-	_	
										Strong and slightly weathered below 9.50m.	ĖТ] -		:H
											HH	1		.: □
												10.00	- 60.30	
	NG =-	011577								PED ATIONS	<u> </u>			
		CHNIQU		USH D	_	sh Type	D-4 /		_	SERVATIONS HOLE/CASING DIAMETER Elapsed Rise To Casing Sealed Hole Dia. Depth Casing Dia. D		WATER		
0.00 Depth E	0	Type	n Pit 1.20 10.			Air Mist	Date/ 17/08/20			20 1.70 3.00 1.70 139 2.80	epth	From To	, Vo	lume (It
1.20 10.0		Rotary C								116 10.00				
							1							
marks														

1. Groundwater encountered at 1.80m rising to 1.70m after 20 mins. 2. Installation details; Raised cover with gas bung, GL - 4.00m plain pipe, 4.00 - 10.00m slotted pipe. 3. Backfill details; GL - 0.10m concrete, 0.10 - 3.50m bentonite, 3.50 - 10.00m gravel. 4. Terminated at scheduled depth.

Project Otterpool Park

Shepway District Council

Project No. UA008926 Easting (OS mE) 611750.54

Ground Level (mAOD) 94.56 Northing (OS mN) 135820.10

Start Date **21/08/2017** End Date **21/08/2017**

Scale **1:50** Sheet 1 of 1

SAMPL	ES		TESTS		RILL LO	OG	ب م	PROG	RESS				STRAT	A_					
Depth	Type/ No.	Type/ No.	Results	TCR% SCR% RQD%		Flush Rtn%	Water Strikes	Date Time	Casino	I		Des	cription			Legend	Depth (Thickness)	Level	Insta Back
										TOPSOIL; (ver brov	vn slightl	y gravelly	sandy cla	y Alu	(0.20) 0.20		.
-										with rootlets. Weak to med grey micritic cobbly angui [HYTHE FOI	dium st LIMES lar fine	TONE. to coars	Recover	ed as slig	htly sandy		(1.30)	94.36	
-		SPT(S)	N>50 (2,4/18,22,10 for 30mm)		_					Medium stro weathered fr	actured	d grey m	icritic LII	MESTON	Ē.		1.50	93.06	
_				40 35 24						Fractures and 30mm), and [HYTHE FOI	subhor	izontal ((1.00) -	<u></u>	
_		SPT(S)	N>50 (4,10/18,25,7 for 10mm)							Dense greer angular, fine Completely v [HYTHE FOI	to coar weather	rse sand red SAN	dstone ar	nd quartz.			2.50	92.06	
-4.00 - 5.00	B1	SPT(S)	N=32 (6,7/8,8,7,9)														(2.00)		
-		SPT(S)	N>50 (4,7/53,0 for							Very dense g SAND. Grav quartz. Com [HYTHE FOI	vel is ar ipletely	ngular, f weathe	ine to co	arse sand	Istone and		4.50	90.06	
		007(0)	0mm)														(2.30)		
-7.00 - 8.00	B2	SPI(S)	N=30 (4,4/7,6,8,9)							Very stiff dar Completely v [ATHERFIEL	weathe	red MUI	DSTONE		to coarse.		6.80	87.76	
-		SPT(S)	N>50 (25,0 for 0mm/50 for 60mm)							Extremely w	l is fine	to coar	se. Grav	rel is angι	ılar,		8.00 -	86.56	
-										fine to coars MUDSTONE [ATHERFIEL	Ξ.		·	•	ered		(1.95)		
-		SPT(S)	N>50 (16,9 for 30mm/27,23 for 40mm)														9.95	84.61	
DRILL	ING TE	CHNIQU	JE F	LUSHE	ETAII S	3		\WA	TER OP	SERVATIONS			HOI	E/CASIN	IG DIAME	TER	WATER	RADDE	D
Depth Top Depth I		Туре			n % Fl	ush Type	Date/	Time Str	ike At Time	Elapsed Rise To	Casing	Sealed	Hole Dia.	Depth	Casing Dia.		From T		olume (It
0.00 0.2 0.20 1.5 1.50 9.9	0 0 I	Inspectio Rotary Ope Rotary C	n Pit 0.20	9.96		Air Mist	21/08/20		1.00	20 3.80	8.00	4.00	139 116	6.50 9.95					
Remarks	otor on	oountoro	ed at 4 00m rising	to 2 90r	n ofter C	20 mins	2 Inst	allation det	oile: Pai	and cover with	gae bu	na Cl	2.00m r	lain nina	200.00	Em clotted	nino		

1. Groundwater encountered at 4.00m, rising to 3.80m after 20 mins. 2. Installation details; Raised cover with gas bung, GL - 2.00m plain pipe, 2.00 - 9.95m slotted pipe. 3. Backfill details; GL - 0.10m concrete, 0.10 - 1.50m bentonite, 1.50 - 9.95m gravel. 4. Terminated at scheduled depth.

Termination Depth: 9.95m

Otterpool Park

Project No. UA008926 Easting (OS mE) **613555.53 Shepway District Council**

Ground Level (mAOD) 79.97 Northing (OS mN) 136952.23

Start Date **22/08/2017** End Date **22/08/2017**

Scale **1:50** Sheet 1 of 2

	SAM	PLES			TESTS	S		DR	ILL LC)G	S	PROGE	RESS					STRAT	A	'					
	Depth		pe/ lo.	Type/ No.	Re	esults	S	CR% CR% QD%	FI (min ave max)	Flush Rtn%	Water Strikes	Date Time	Casing Water	1			Des	cription			Legend	Depth (Thickne	ss) Lev		nstall/ ackfill
F															PSOIL; G	Grass o	er brov	vn slightl	y gravelly	/ sandy cla	y ^{NL}	(0.20)	70	d.	2
E	0.30	Е	S1											MA	DE GROI	JND; L	ean mi	x CONC	RETE.			0.20	79 79	.67	1 /
ŀ,	0.50 0.50 - 0.7		S2 33												n orange to coarse					AY. Sand	is	(0.45)	ł	1	11/
	0.75 - 1.0		34											lime	estone an	d quart	Z.	J,				0.75	79	.22	1/
Ŀ	1.00	_	S5											Med	AD DEPO	se oran	ge sligh	ntly grave	elly very o	layey fine	to		1		1 [2]
Ŀ	1.00	-		SDT/S)	N=14 (1,2	2/1 2 2 1	,								rse SANE				subangul	ar, fine to			ł		11/
Ŀ			ľ	01 1(0)	14-14 (1,2	L/+,0,0,+	'								AD DEPO			۷.				(1.25)	ł		1/2
ŀ																						· '	ł		+
Ŀ																							ł		
Ł	2.00		7	SPT(S)	N=28 (1,4	4/6778	,															2.00	77.	97	
ŀ	2.00		S6	S. 1(S)	20 (.,	., 0, , , , , 0	'								dium dens ally very		very si	ty fine to	medium	SAND.	× × ×	. 2.00	1		
ŧ														[HE	AD DEPO	OSITS]					××		1		H.:
F																					××	4	†		
t																					×××	(1.50)	‡		
L	3.00		9 :	SPT(S)	N=30 (2,5	5/7,6,8,9	,														×××		‡		
ŧ	3.00	E	S8	, ,	,																×、×		‡		H
ţ																					×××		‡		H:
F															y dense b						×××	3.50	76	.47	Hil
F															dium SILT		and. (omplete	y weath	ered	(× × >	4	†		Hil
F	4.00		11	SPT(S)	N=57									[SA	NDGATE	FORM	IATION]			(X X X	-	‡		H.:
F	4.00	ES	310		(5,8/10,1	5,18,14)															× × ×		†		
F																					×××		ļ		
F																					$\times \times \times$		Ť		1:1
F																					(× × ×	1	Ť		
F	5.00	D	12																		(X X)	-	+		
F																					(× × >	4	Ŧ		H.:
F				ODT(0)	N-00 /4 /	E/E 4 0 7	.														× × ×	5.50	† -,		
F				SP1(S)	N=22 (4,5	5/5,4,6,7	'								becomin					sandy ar, fine to	× × ×		74	4/	
F														coa	rse siltsto	ne.			i is aligui	ai, iiie to	$\times \times \times$		Ŧ		
E	6.00	D	13											[SA	NDGATE	FORM	IATION]			(X X) X X X		+		$\mathbb{H}^{:}$
Ŀ																					(× × ×	1	1		
Ŀ																					(-	1		
Ŀ																					(× × >	4	1		H.:
Ŀ																					× × ×		1		·.
F	7.00	D	14	SPT(S)	N=49 (6,8/9,11,	15 14)															× × ×		+		
ŀ					(0,0/0,11,	,10,14)															$\times \times \times$		-		H
Ŀ																					(× × ×		1	.:	H:
ŀ																					(× × ×	1	ļ		
ţ																					(X X) X X X	(4.50)	†		1:1
F																					(× × >	4	†		$\exists : \mid$
þ																					× × ×		‡		-∏.`·
þ			:	SPT(S)	N=41 (3,4	4/6,7,10,	18)														× × ×		‡		
þ																					$\times \times \times$		1		H
ļ																					× × ×		‡		Ηij
F	9.00	D	15																		(× × ×		†		
F																					(1	ļ		Ħ:l
F																					(× × >	4	†		'H: 1
F																					(X X X	-	Ť		$\left \cdot \right \cdot \left \cdot \right $
E				CDT/C)	N>50 (25	for								L							× × ×	10.00	† 69	07	Д÷
E				, ,		, 101																10.00	1		
			TEC	CHNIQU		Fec	FLUS To		TAILS		D-4 5			SERV	ATIONS	Cosin	Cost			IG DIAME			ER AD		a a /I+-\
	pth Top De 0.00	1.20		Type	n Pit	From 1.20	10.00	Rtn 9		sh Type Air Mist	Date/ 23/08/201			20	Rise To 4.00	Casing 5.50	Sealed 4.00	Hole Dia.	Depth 5.50	Casing Dia.	Depth	From	10	volum	ne (Itr)
	1.20	10.00		Rotary C	ore													116	10.00						

Remarks

1. Groundwater encountered at 4.20m, rising to 4.00m after 20 mins. 2. Installation details; Flush cover with gas bung, GL - 2.00m plain pipe, 2.00 - 10.00m slotted pipe. 3. Backfill details; GL - 0.10m concrete, 0.10 - 1.50m bentonite, 1.50 - 10.00m gravel. 4. Terminated at scheduled depth.

Otterpool Park

Project No. UA008926 Easting (OS mE) **613555.53 Shepway District Council**

Ground Level (mAOD) 79.97 Northing (OS mN) 136952.23

Start Date **22/08/2017** End Date **22/08/2017**

Scale **1:50** Sheet 2 of 2

SAMPLE	S		TESTS	1 0	RILL LO)G		PROGR	₹FSS			STRAT	Ά					
	Type/ No.	Type/ No.		TCR% SCR%	FI (min ave max)	Flush Rtn%	Water Strikes	Date Time	Casina		D	escription			Legend	Depth (Thickness	Level	Insta Back
			50mm/33,17 for 20mm)	I QD /	illax)												+	
			2011111)														†	
																	Ŧ	
																	1	
																	+	
																	-	
																	1	
																	Ŧ	
																	1	
																	+	
																	1	
																	1	
																	†	
																	1	
																	†	
																	†	
																	‡	
																	‡	
																	‡	
																	Ť	
																	†	
																	‡	
																	†	
																	†	
																	Ŧ	
																	ł	
																	†	
																	1	
																	1	
																	1	
																	1	
																	†	
																	†	
																	‡	
																	†	
																	†	
																	Ť	
																	1	
																	+	
																	<u> </u>	
																	1	
																	†	
																	1	
																	+	
																	†	
																	1	
																	†	
																	‡	
																	+	
DE::::	NO ==	01111101								250 (47:0::-			E/0::0::	10 DI		1	1	
DRILLIN th Top Depth Ba		CHNIQL Type		LUSH D		ush Type	Date/		TER OB	SERVATIONS Elapsed Rise To	Casing Seale			IG DIAME Casing Dia.			R ADDE	ED ⁄olume (
		Increation		0.00		Air Mist	23/08/20			20 4.00	5.50 4.00		5.50	<u> </u>				
00 1.20 20 10.00	5	Inspection Rotary C	Core			, an inner	20/00/20				5.50 4.00	139 116	5.50 10.00					

1. Groundwater encountered at 4.20m, rising to 4.00m after 20 mins. 2. Installation details; Flush cover with gas bung, GL - 2.00m plain pipe, 2.00 - 10.00m slotted pipe. 3. Backfill details; GL - 0.10m concrete, 0.10 - 1.50m bentonite, 1.50 - 10.00m gravel. 4. Terminated at scheduled depth.

Project
Otterpool Park
Client

Shepway District Council

Project No. **UA008926** Easting (OS mE) **610984.97** Ground Level (mAOD) 102.28 Northing (OS mN) 135716.41 Start Date 16/08/2017 End Date 16/08/2017

Sheet 1 of 1

SAN	1PLES	3		T	ESTS	- Se					STRAT	TΑ						I4-II/
Depth	1	Type/ No.	Depth	Type/ No.	Results	Water Strikes				[Description				Legend	Depth (Thickness	1	Install/ Backfill
0.05 - 0.	15	ES1	0.05	PID	<1ppm		TOPSOIL			n slightly	gravelly sa	ndy clay w	ith rootlets. F	Rare	NL	(0.20) 0.20	102.00	
- 0.50 - 0. - 0.50 - 0. - 0.50 - 0. - 0.50 - 0. - 0.70 - 1.	70 70 00 00	ES2 B10 D6 B11 D7 ES3	0.50	PID	<1ppm		MADE G	ROUND; of concrete	Dark gree e. Sand i	s fine to d	wn slightly (coarse. Gra	gravelly sa avel is ang	indy CLAY wit ular to rounde	th rare ed, fine to		(1.00)	102.08	
1.00 - 1. - 1.20 - 1.		B12	1.20 1.20 1.50		N=11 (1,2/2,2,3,4) <1ppm	0	Medium o	lense gree EPOSITS	enish bro]	wn claye	y SAND. S	and is fine	to coarse.			1.20	101.08	
- - 1.80 - 1. - 1.90 - 2. - 2.00 - 2.	00	D8 ES4 B13	2.00		N=13 (1,2/2,3,4,4)	0	Medium	lense ora	naish bro	wn clave	y SAND. S	and is fine	to coarse			2.00	100.28	
-			2.00	PID	<1ppm		[HEAD D			5.4,5	, 0, 12.					<u> </u>		
2.80 - 2.	90	D9	2.50	PID	<1ppm											(1.00)		
2.90 - 3.	00	ES5	3.00 3.00	SPT(S) PID	N>50 (4,2/2,10,38,0 for 0mm) <1ppm	0										3.00	99.28	<u> </u>
-																		
-																		
-																		
-																		
-																	Ī	
-																	Ī	
-																		
-																		
-																		
-																		
-																		
-																		
	י ייפת	INC T	ECHNIQU	IE .		\\\\\	R OBSERVA	TIONS			11	OI E/CASI	NG DIAMETE	D T		BACKF		
From 0.00 1.20	To 1.20 3.00)	Technique Inspecti Window S	ique on Pit	Date/Time	Strike At	Time Elapsed	Rise To	Casing	Sealed	Hole Dia.	Depth 3.00	Casing Dia.	Depth 0.00	Top 0.00 0.20	Base 0.20 3.00	Back Arisir Bento	igs
20	5.00																	

Remarks

1. Groundwater not encountered. 2. Terminated at 3.00m due to refusal.

Project
Otterpool Park

Shepway District Council

Project No. **UA008926** Easting (OS mE) **611356.29**

Ground Level (mAOD) 94.65 Northing (OS mN) 136095.88

Start Date 17/08/2017 End Date 17/08/2017 Scale **1:50** Sheet 1 of 1

SAMPLE	S		TI	ESTS	- S					STRAT	Ā							
Depth	Type/ No.	Depth	Type/ No.	Results	Water Strikes				D	escription				L	.egend	Depth (Thickness)	Level	Install/ Backfill
0.00 - 0.20 0.00 - 0.20	D2 ES1	0.10	PID	<2 ppm	-	TOPSOIL; rockhead ei	Grass over	r brown s			ndy clay w	ith rootlets	. Limeston			(0.30)		III≣III
0.00 - 0.20	ES1					rockhead ei	ncountered	l at 0.30n	n.					NIX		0.30)	94.35	
-																		
F																		
E																		
E																		
-																		
-																-		
ļ.																		
-																_	-	
F																		
F																		
E																		
-																		
F																-	-	
‡																		
F																		
E																		
E																		
-																		
-																		
-																-		
-																		
F																-	-	
E																		
-																		
ļ.																		
-																-	-	
F																		
E																-		
-																		
_																_		
-																		
ļ.																		
-																		
F																		
-																-	-	
-																		
<u> </u>																-		
<u> </u>																		
F																		
E																	ĺ	
t																		
-																-		
ļ																		
-																-	-	
DRII	LING T	ECHNIQU	JE		WATER	R OBSERVATI	IONS			Н	OLE/CASII	NG DIAMF	ETER			BACKFI	LL	
From To	0	Techni	ique					asing S	Sealed	Hole Dla.	Depth	Casing Dia	a. Depth		Гор	Base	Back	
0.00 0.3	30	Inspecti	on Pit							300	0.30	0	0.00	0	.00	0.29	Arisin	igs
Remarks																		

1. Groundwater not encountered. 2. Terminated at 0.30m due to refusal on rockhead.

Project No. **UA008926** Easting (OS mE) **611356.28**

Ground Level (mAOD) 94.65 Northing (OS mN) 136095.87

Start Date 17/08/2017 End Date 17/08/2017 Scale **1:50** Sheet 1 of 1

WS102B

SAI	MPLES			TE	STS	- Se					STRA	ГА		'				,
Dept		ype/ No.	Depth	Type/ No.	Results	Water Strikes				ı	Description				Legend	Depth (Thicknes	Level	Install/ Backfill
		NO.		INO.		+	TOPSOIL	; Grass o	ver brow				rith rootlets. L	imestone	NE		+	
-							rockhead	encounte	red at 0.2	20m.						(0.20) 0.20	94.45	≡≡≡
Ļ																	‡	
F																	1	
ļ																	1	
-																	†	
F																	1	
F																	‡	
F																	1	
F																	-	
F																	Ŧ	
E																	-	
-																	ł	
t																	1	
L																	1	
-																	ļ	
-																		
-																	†	
-																	1	
F																	‡	
F																	1	
F																	1	
F																	Ť	
F																	1	
F																	+	
E																	-	
E																	Ī	
E																	Ī	
-																	1	
-																	+	
Ł																	1	
L																	1	
t																	1	
-																	1	
-																	†	
-																	1	
ļ.																	‡	
-																	1	
‡																	1	
-																	†	
-																	1	
Ė																	‡	
-																	1	
F																	1	
F																	Ť	
-																	1	
F																	Ŧ	
[1	
E																	Ī	
From	DRILLI To	NG T	ECHNIQU Techni		Date/Time	WATE Strike At	R OBSERVA	TIONS Rise To	Cooir -	Sealed	Hole Dla.	OLE/CASI Depth	NG DIAMETE Casing Dia.		Ton	BACK Base	FILL Back	-fill
0.00	0.20	+	Inspecti		Date/Time	Juine At	nine Elapsed	IVISE IO	Casing	Jealeu	300	0.20	0	Depth 0.00	Top 0.00	0.21	Arisir	
											<u> </u>							

Remarks

1. Groundwater not encountered. 2. Terminated at 0.20m due to refusal on rockhead.

Project
Otterpool Park
Client

Shepway District Council

Project No. UA008926 Easting (OS mE) **611049.65**

Ground Level (mAOD) 94.59 Northing (OS mN) 136228.45

Start Date 15/08/2017 End Date 15/08/2017

Sheet 1 of 1

SAM	//PLES			TI	ESTS	l se					STRA	ГА				I		 t- /
Depth		ype/ No.	Depth	Type/ No.	Results	Water				[Description				Legend	Depth (Thickness	Level	Install/ Backfill
0.10 - 0.3	20 E	S1 D5	0.10	PID	<1ppm		TOPSOIL	; Grass o	over brow	n slightly	gravelly sa	ndy clay w	ith rootlets.			(0.35)		4 6
- 0.50 - 0.5 - 0.50 - 0.5 - 0.50 - 0.5	70 E	S2 315 D6	0.40	PID	<1ppm		Firm brow coarse flii [HEAD D	nt and lim	estone.	CLAY. G	ravel is sub	-rounded t	o sub-angula	r, fine to	×	0.35 (0.55)	94.24	
0.70 - 0.9 0.70 - 0.9 1.00 - 1.0	90 E 90 05 E	313 D7 ES3	0.90	PID	<1ppm		Stiff green				CLAY. Grav	el is sub-r	ounded to su	b-angular,	*	0.90 (0.30)	93.69	
1.10 - 1.1	20 70 E	D8 314	1.20 1.20	PID	N=16 (2,2/3,4,5,4) <1ppm	0	[HEAD D	EPOSITS] n mottled		andy CLAY	. Sand is	fine to mediu	m.	1×	1.20	93.39	
- - 1.70 - 1.80 - 2.0	80 E	ES4 D9	1.50	PID	<1ppm		[IILAD D	LI OGITO	J						<u>×</u> × × × × × × × × × × × × × × × × × ×	(0.80)	ļ	
2.00 - 2.8	80 E	316	2.00 2.00	SPT(S) PID	N=16 (3,3/4,4,4,4) <1ppm	0	Medium o			y clayey \$	SAND. Sar	nd is fine to	o medium.		 	2.00	92.59	
-			2.50	PID	<1ppm											(1.20)	ļ	
2.80 - 3.0		010 317	3.00	SPT(S)	N=4 (1,1/1,1,1,1)	0												
3.20 - 3.	80 E	318	3.00 3.20	PID PID	<1ppm <1ppm		Loose ora			n clayey S	SAND. San	d is fine to	medium.			3.20	91.39	
3.80 - 4.0	00 1	011	3.50	PID	<1ppm				-							(0.80)	†	
4.00 - 4.		319	4.00 4.00	SPT(S) PID	N=4 (1,1/1,1,1,1) <1ppm	0	Soft oran			dy CLAY.	Sand is fir	ne to mediu	ım.			4.00	90.59	
-			4.50	PID	<1ppm											(1.00)	†	
4.80 - 5.0	00 [012	5.00	SPT(S)	N=8 (1,2/2,2,2,2)	0										5.00	89.59	
			5.00	PID	<1ppm													
-																	†	
_																		
-																	†	
-																		
-																	†	
-																	<u> </u>	
																	†	
-																		
-																		
-																	†	
_																	<u> </u>	
From	DRILLI To	NG T	ECHNIQU Techn		Date/Time	WATER Strike At	R OBSERVA Time Elapsed	TIONS Rise To	Casing	Sealed	Hole Dla.	Depth	NG DIAMETI Casing Dia.	Depth	Тор	BACKF Base	TLL Back	cfill
0.00 1.20	1.20 5.00		Inspecti Window S								116	5.00	0	0.00	0.00 0.20 1.00	0.20 1.00 5.00	Conc Bento Gra	nite

Remarks

1. Groundwater seepage encountered at 2.50m. 2. Terminated at scheduled depth.

WS104A

Project Otterpool Park

Shepway District Council

Project No. **UA008926** Easting (OS mE) **611159.6**

Ground Level (mAOD) 82.61 Northing (OS mN) 136549.0

Start Date 17/08/2017 End Date 17/08/2017

Scale **1:50** Sheet 1 of 1

SAMPLE				ESTS	ige age ⊢									Depth (Thickness)	Level	I In: Ba
Depth	Type/ No.	Depth	Type/ No.	Results	Water				escription				Legend	(Inickness)	1	
						MADE GRO	UND; Black slig tarmac, concret	ghtly claye	y sub-round	ded to ang	ular fine to c	oarse	XXX	(0.30)	82.31	Ш
		0.30	PID	<1ppm		GRAVEL OF	armac, concrete	e and lime	stone.					0.30	82.31	, 🗔
															1	
															ł	
															ł	
															1	
															1	
															ł	
															ļ	
															ļ	
															İ	
														-	+	
															1	
															ļ	
															ł	
															I	
															1	
														-	t	
															ł	
															ł	
															‡	
															‡	
															Ł	
															Ţ.	
															1	
															ł	
															Ī	
															1	
															İ	
															ł	
															1	
															1	
															İ	
															+	
															Ī	
															1	
															ţ	
															ł	
															1	
														-	†	
															İ	
															1	
															Ī	
															1	
															Ĺ	
															+	
															1	
															‡	
															ł	
															ł	
															1	
															1	
															+	
															ļ	
															‡	
															ł	
														-	+	
DD	LINIC	EOUNIO:	ır		10/07	ODCED (AT	ONE	Т	1.0) E/O * C''	NO DIAMET			DACKE		土
		ECHNIQU		D-4-75		OBSERVATIO		Sealed	Hole Dla.	DE/CASI Depth	NG DIAMETI Casing Dia.	Depth Depth	Тор	BACKF Base		de.
		Techni	que	Date/Time	Strike At	Time Elapsed R	Rise To Casing	Sealed	HOIE DIA	Depth	Casing Dia.	ı Denth	IOD	Base	Back	WTHE
om To 00 0.30		Inspecti		17/08/2017 08:55	0.30		0.20 0.00	0.00	300	0.30	0	0.00	0.00	0.30	Arisir	

1. Groundwater encountered at 0.30m, rising to 0.20m after 20 mins. 2. Terminated at 0.30m due to refusal

WS104B

Project
Otterpool Park

Shepway District Council

Project No. **UA008926** Easting (OS mE) **611158.8**

Ground Level (mAOD) 82.49 Northing (OS mN) 136550.1

Start Date 17/08/2017 End Date 17/08/2017

Scale **1:50** Sheet 1 of 1

SAI	MPLES		TI	ESTS	- Se	STRATA				l4-11/
Dept	T - /	Depth	Type/ No.	Results	Water Strikes	Description	Legend	Depth (Thickness)	Level	Install/ Backfill
-	INO.		INO.			MADE GROUND; Grey clayey sub-rounded to angular fine to coarse GRAVEL of tarmac, concrete and limestone.		(0.15) 0.15	00.24	<u>III III</u>
ļ.						\tarmac, concrete and limestone.		0.15	02.34	
F								-		
F										
F										
E]		
E										
-								-		
ţ										
-									-	
ļ										
F										
F										
E										
-								-	-	
ļ.										
-] :		
ļ										
ļ.] :		
F								-	-	
F										
E								-		
Ł										
Ŀ								_		
-										
-										
-								-		
F										
-								_	-	
E										
Ł										
ţ										
-										
-								-	-	
-										
F										
F										
E										
-]		
<u> </u>										
-								-		
ļ.										
F									-	
F								:		
E]		
E										
<u> </u>										
								-	-	
	DRILLING				WATER	R OBSERVATIONS HOLE/CASING DIAMETER	1	BACKFI	LL	<u> </u>
From	То	Techn	ique	Date/Time :	Strike At	Time Elapsed Rise To Casing Sealed Hole Dla. Depth Casing Dia. Depth	Тор	Base	Back	cfill
									Ariein	nas
0.00	0.15	Inspecti		17/08/2017 12:10	0.15	5 0.10 0.00 0.00 300 0.15 0 0.00	0.00	0.15	Arisin	ngs

1. Groundwater encountered at 0.15m, rising to 0.10m after 20 mins. 2. Terminated at 0.15m due to refusal.

Termination Depth: 0.15m

WS104C

Project Otterpool Park **Shepway District Council** Project No. **UA008926** Easting (OS mE) **611153.3**

Ground Level (mAOD) 82.44 Northing (OS mN) 136615.9

Start Date 17/08/2017 End Date 17/08/2017 Scale **1:50** Sheet 1 of 1

=======================================	_						_										_	_
SAN	/IPLE	s		TI	ESTS	- Se					STRA	ГА				Donath		Inctall/
Depth	,	Type/	Depth	Type/	Results	Water Strikes				Г	Description				Legend	Depth (Thickness	Level	Install/ Backfill
		No.	Берит	No.	results	- 0	TOROGU	_					20 0 0		Logona			Na L PAG
0.10 - 0.	20	D6 ES1	0.20	PID	<1ppm						-	ndy clay w	ith rootlets.			(0.20) 0.20 0.30	82.24	4 65
+			0.20				MADE GI	ROUND; L	ean-mix	CONCR	ETE.	ravel ie eul	o-angular to a	ngular fine	\``\`	0.30	82.14	
0.50 - 0.	55	ES2	0.50	PID	<1ppm		to coarse	limestone		iii giaveii	y CLAI. GI	avei is sui	J-angular to a	ingulai, iine			Ŧ	
- 0.50 - 0. - 0.50 - 0.	70 70	B12 D7					[HEAD D	EPOSITS]							: ::		1	2
0.70 - 1.	00	B13														1	1	
0.70 - 1. 1.00 - 1.		D8 ES3	1.00	PID	<1ppm												+	
1.20 - 1.		B14	1.20	SPT(S)	N=4 (1,1/1,1,1,1)	0											Ī	
ļ															: ::		ļ	
t			1.50	PID	<1ppm											1	†	
																ł	+	-: - :
- 1.80 - 1. - 1.90 - 2.	00	ES4 D9															1	
2.00 - 2.	80	B15	2.00 2.00	SPT(S) PID	N=18 (1,1/1,3,5,9) <1ppm	0										(0.70)	†	
ŀ			2.00	'''	Тери											(3.70)	+	
+																	+	
F			2.50	PID	<1ppm												‡	$ \cdot $
2.80 - 2.	an l	ES5														1	İ	
2.90 - 3.	00	D10	2.00	SPT(S)	N=7 (4 4/0 0 4 0)	0											+	
3.00 - 3.	90	B16	3.00 3.00	PID	N=7 (1,1/2,2,1,2) <1ppm	"											Ţ	
ļ.																1	1	
L			3.50	PID	<1ppm										: : : :	1	‡	
-			3.50	LID	- 199111											ł	+	ŀ:¦∏:¦
F												my bus	mottled	nolouse#]	1	·H·
3.90 - 4.	00	D11	4.00	SPT(S)	N>50 (25,0 for 0mm/50,0	0					Crea	imy brown	mottled grey of	colouration.		4.00	78.44	
+					for 0mm)												1	
F			4.00	PID	<1ppm												Ŧ	
Ė																	‡	
t																	İ	
-																	+	
F																	‡	
t																	ļ	
+																	+	
F																	Ŧ	
ļ																	1	
t																	1	
F																	+	
-																	1	
t																	ł	
-																	+	
F																	1	
t																	1	
\vdash																	+	
F																	1	
ļ																	1	
t																	t	
-																	1	
ļ.																	1	
F																1	†	
-																	+	
ļ																	1	
t																1	†	
+																	-	
ļ.																	1	
<u> </u>																	†	
-																1	1	
ļ																	1	
t																	‡	
-																	+	
F																	1	
_																	<u> </u>	
	DRII I	ING T	ECHNIQU	JE	1	WATER	L R OBSERVA	TIONS			Н	OLE/CASI	NG DIAMETI	ER T		BACK	ILL	<u> </u>
From	To		Techn		Date/Time	Strike At	Time Elapsed	Rise To	Casing	Sealed	Hole Dla.	Depth Depth	Casing Dia.	Depth	Тор	Base	Back	cfill
0.00	1.20		Inspecti	on Pit	1 1		F				116	4.00	0	0.00	0.00	0.20	Conci	rete
1.20	4.00)	Window	Sample											0.20 1.00	1.00 4.00	Bento Grav	nite /el
1													1	1				

Remarks

1. Groundwater seepage encountered at 3.90m. 2. Terminated at 4.00m due to refusal.

Project
Otterpool Park
Client

Shepway District Council

Project No. **UA008926** Easting (OS mE) **611285.92**

Ground Level (mAOD) **70.00**Northing (OS mN) **136769.95**

Start Date 14/08/2017 End Date 14/08/2017

Sheet 1 of 1

Dept. Times Dept. Times Dept. Times Dept. Dept	SAN	//PLES	S		TI	ESTS	la S					STRAT	ΓA		<u> </u>				l4-II/
DRA LING TECHNIQLE WATER OSSERVATIONS HOLE-CASING DIAMETER BOLGET L.	Depti	h		Depth		Results	Wate				Г	Description				Legend	/Th:-!	Level	
DRULING TECHNOLE WATER OBSERVATIONS Industry lands and some	0.10 - 0.	.23		0.15		<1ppm		TOPSOIL	.; Grass o	ver brow	n slightly	gravelly sa	ndy clay w	vith rootlets.		ήΙ <i>ι</i> ,	(0.25)	1	4. 6
2001 200 201	E										nge sligh	tly sandy C	LAY. Sand	d is fine		×	0.25	69.74	7
5.51								[HEAD D	EPOSITS.							<u>×_</u>	(0.65)	†	
120-140 011 120 SP(16) N-17 (1.10.4.4.6.) 0 0 0 0 0 0 0 0 0	0.50 - 0.	.70	B9													×_ ×		ļ	
130	F										range sliç	ghtly sandy	CLAY. Sa	ind is fine to c	oarse.	×_×_		† ^{69.10}	14
150 DB	1.20 - 1.	.40	B11	1.20	SPT(S)	N=17 (1,1/3,4,4,6)	0	ן וובאס ט	Li Odilo,	l						×_×_	(0.50)		
Section Sect	-			1.50	PID	<1ppm					htly sand	dy SILT. Sar	nd is fine to	o medium.		×××	(0.20)	÷	· : :
DRULING TeCHNIQUE WATER DISSERVATIONS HOLE/CASING DIAMETER BACKELL	100 0	00	De					Stiff to ve	ry stiff gre	y mottled	orange	sandy SILT.	Sand is f	ine to medium	1.	$\times \times \times$	1.60	68.40	
229-275 510 225 77 78 79 79 79 79 79 79	1.80 - 2.	.00	ES4	2.00	SPT(S)	N=27 (3.4/4.5.9.9)	0	[HEAD D	EPOSITS							X X X X X X	(0.65)	1	
259-255 D7 299 PID 15mm PID 1	r				, ,	, ,										$\times \times \times$	2 25	67.74	
279 245 245 270 291 245 270 291 245 270 291 245 270 291 245 270 291 245 270 291 245 270 291 245 270 291 245 270 291 245 270 291 245 270 291 245 270 291 245 291 245 291 245 291 245 291 245 291 245 291 245 291 245 291 245 291 245 291 245 291 245 291 245 291	-			2.25	FID	Гіррії					ottled blad	ck slightly s	andy SILT.	Sand is fine	to coarse.	$(\times \times \times$	1	07.74	
275 - 285	 				PID			-								$\times \times \times$	1	67 30	
DRILLING TECHNIQUE WATER OBSERVATIONS HOLE/CASING DIAMETER BACKFILL From To Incompus Date Transport of the State of Table Casing Saided Historical Date Casing Dia Depth Top Saide Dashill Background Table Casing Diameter BACKFILL From To Incompus Date Transport of Table Dashill Background Table	2.75 - 2. 2.75 - 2.	.85 .85	B14 D8		1	N>50 (5,5/11,13,17,9 for	0						d is fine to	coarse. Grav	el is	XXX	(0.15) 2.85	1	Ŀ:H.:
From To Technique Date/Time Strike At Time Elapsed Rise To Casing Sealed Hole Dla. Depth Casing Dia. Depth Top Base Backfill 0.00 1.20 Inspection Pit 116 2.85 0 0.00 0.00 0.20 Concrete 1.20 2.85 Window Sample 0.20 1.00 Bentonite	-					[15mm)										/		†	
From To Technique Date/Time Strike At Time Elapsed Rise To Casing Sealed Hole Dla. Depth Casing Dia. Depth Top Base Backfill 0.00 1.20 Inspection Pit 116 2.85 0 0.00 0.00 0.20 Concrete 1.20 2.85 Window Sample 0.20 1.00 Bentonite	-																		
From To Technique Date/Time Strike At Time Elapsed Rise To Casing Sealed Hole Dla. Depth Casing Dia. Depth Top Base Backfill 0.00 1.20 Inspection Pit 116 2.85 0 0.00 0.00 0.20 Concrete 1.20 2.85 Window Sample 0.20 1.00 Bentonite	-																	‡	
From To Technique Date/Time Strike At Time Elapsed Rise To Casing Sealed Hole Dla. Depth Casing Dia. Depth Top Base Backfill 0.00 1.20 Inspection Pit 116 2.85 0 0.00 0.00 0.20 Concrete 1.20 2.85 Window Sample 0.20 1.00 Bentonite	E																	İ	
From To Technique Date/Time Strike At Time Elapsed Rise To Casing Sealed Hole Dla. Depth Casing Dia. Depth Top Base Backfill 0.00 1.20 Inspection Pit 116 2.85 0 0.00 0.00 0.20 Concrete 1.20 2.85 Window Sample 0.20 1.00 Bentonite	E																	1	
From To Technique Date/Time Strike At Time Elapsed Rise To Casing Sealed Hole Dla. Depth Casing Dia. Depth Top Base Backfill 0.00 1.20 Inspection Pit 116 2.85 0 0.00 0.00 0.20 Concrete 1.20 2.85 Window Sample 0.20 1.00 Bentonite	-																		
From To Technique Date/Time Strike At Time Elapsed Rise To Casing Sealed Hole Dla. Depth Casing Dia. Depth Top Base Backfill 0.00 1.20 Inspection Pit 116 2.85 0 0.00 0.00 0.20 Concrete 1.20 2.85 Window Sample 0.20 1.00 Bentonite	-																		
From To Technique Date/Time Strike At Time Elapsed Rise To Casing Sealed Hole Dla. Depth Casing Dia. Depth Top Base Backfill 0.00 1.20 Inspection Pit 116 2.85 0 0.00 0.00 0.20 Concrete 1.20 2.85 Window Sample 0.20 1.00 Bentonite	F																	Ť	
From To Technique Date/Time Strike At Time Elapsed Rise To Casing Sealed Hole Dla. Depth Casing Dia. Depth Top Base Backfill 0.00 1.20 Inspection Pit 116 2.85 0 0.00 0.00 0.20 Concrete 1.20 2.85 Window Sample 0.20 1.00 Bentonite	E																	-	
From To Technique Date/Time Strike At Time Elapsed Rise To Casing Sealed Hole Dla. Depth Casing Dia. Depth Top Base Backfill 0.00 1.20 Inspection Pit 116 2.85 0 0.00 0.00 0.20 Concrete 1.20 2.85 Window Sample 0.20 1.00 Bentonite	-																	†	
From To Technique Date/Time Strike At Time Elapsed Rise To Casing Sealed Hole Dla. Depth Casing Dia. Depth Top Base Backfill 0.00 1.20 Inspection Pit 116 2.85 0 0.00 0.00 0.20 Concrete 1.20 2.85 Window Sample 0.20 1.00 Bentonite	-																		
From To Technique Date/Time Strike At Time Elapsed Rise To Casing Sealed Hole Dla. Depth Casing Dia. Depth Top Base Backfill 0.00 1.20 Inspection Pit 116 2.85 0 0.00 0.00 0.20 Concrete 1.20 2.85 Window Sample 0.20 1.00 Bentonite	F																	†	
From To Technique Date/Time Strike At Time Elapsed Rise To Casing Sealed Hole Dla. Depth Casing Dia. Depth Top Base Backfill 0.00 1.20 Inspection Pit 116 2.85 0 0.00 0.00 0.20 Concrete 1.20 2.85 Window Sample 0.20 1.00 Bentonite	E																	-	
From To Technique Date/Time Strike At Time Elapsed Rise To Casing Sealed Hole Dla. Depth Casing Dia. Depth Top Base Backfill 0.00 1.20 Inspection Pit 116 2.85 0 0.00 0.00 0.20 Concrete 1.20 2.85 Window Sample 0.20 1.00 Bentonite	-																	1	
From To Technique Date/Time Strike At Time Elapsed Rise To Casing Sealed Hole Dla. Depth Casing Dia. Depth Top Base Backfill 0.00 1.20 Inspection Pit 116 2.85 0 0.00 0.00 0.20 Concrete 1.20 2.85 Window Sample 0.20 1.00 Bentonite	-																		
From To Technique Date/Time Strike At Time Elapsed Rise To Casing Sealed Hole Dla. Depth Casing Dia. Depth Top Base Backfill 0.00 1.20 Inspection Pit 116 2.85 0 0.00 0.00 0.20 Concrete 1.20 2.85 Window Sample 0.20 1.00 Bentonite	-																	1	
From To Technique Date/Time Strike At Time Elapsed Rise To Casing Sealed Hole Dla. Depth Casing Dia. Depth Top Base Backfill 0.00 1.20 Inspection Pit 116 2.85 0 0.00 0.00 0.20 Concrete 1.20 2.85 Window Sample 0.20 1.00 Bentonite	E																	Ī	
From To Technique Date/Time Strike At Time Elapsed Rise To Casing Sealed Hole Dla. Depth Casing Dia. Depth Top Base Backfill 0.00 1.20 Inspection Pit 116 2.85 0 0.00 0.00 0.20 Concrete 1.20 2.85 Window Sample 0.20 1.00 Bentonite	-																		
From To Technique Date/Time Strike At Time Elapsed Rise To Casing Sealed Hole Dla. Depth Casing Dia. Depth Top Base Backfill 0.00 1.20 Inspection Pit 116 2.85 0 0.00 0.00 0.20 Concrete 1.20 2.85 Window Sample 0.20 1.00 Bentonite	-																	†	
From To Technique Date/Time Strike At Time Elapsed Rise To Casing Sealed Hole Dla. Depth Casing Dia. Depth Top Base Backfill 0.00 1.20 Inspection Pit 116 2.85 0 0.00 0.00 0.20 Concrete 1.20 2.85 Window Sample 0.20 1.00 Bentonite	-																		
From To Technique Date/Time Strike At Time Elapsed Rise To Casing Sealed Hole Dla. Depth Casing Dia. Depth Top Base Backfill 0.00 1.20 Inspection Pit 116 2.85 0 0.00 0.00 0.20 Concrete 1.20 2.85 Window Sample 0.20 1.00 Bentonite	F																	ŧ	
From To Technique Date/Time Strike At Time Elapsed Rise To Casing Sealed Hole Dla. Depth Casing Dia. Depth Top Base Backfill 0.00 1.20 Inspection Pit 116 2.85 0 0.00 0.00 0.20 Concrete 1.20 2.85 Window Sample 0.20 1.00 Bentonite	E																	1	
From To Technique Date/Time Strike At Time Elapsed Rise To Casing Sealed Hole Dla. Depth Casing Dia. Depth Top Base Backfill 0.00 1.20 Inspection Pit 116 2.85 0 0.00 0.00 0.20 Concrete 1.20 2.85 Window Sample 0.20 1.00 Bentonite	-																,	‡	
From To Technique Date/Time Strike At Time Elapsed Rise To Casing Sealed Hole Dla. Depth Casing Dia. Depth Top Base Backfill 0.00 1.20 Inspection Pit 116 2.85 0 0.00 0.00 0.20 Concrete 1.20 2.85 Window Sample 0.20 1.00 Bentonite	ļ.																	†	
From To Technique Date/Time Strike At Time Elapsed Rise To Casing Sealed Hole Dla. Depth Casing Dia. Depth Top Base Backfill 0.00 1.20 Inspection Pit 116 2.85 0 0.00 0.00 0.20 Concrete 1.20 2.85 Window Sample 0.20 1.00 Bentonite	ļ.																	†	
From To Technique Date/Time Strike At Time Elapsed Rise To Casing Sealed Hole Dla. Depth Casing Dia. Depth Top Base Backfill 0.00 1.20 Inspection Pit 116 2.85 0 0.00 0.00 0.20 Concrete 1.20 2.85 Window Sample 0.20 1.00 Bentonite	F																	Ť	
From To Technique Date/Time Strike At Time Elapsed Rise To Casing Sealed Hole Dla. Depth Casing Dia. Depth Top Base Backfill 0.00 1.20 Inspection Pit 116 2.85 0 0.00 0.00 0.20 Concrete 1.20 2.85 Window Sample 0.20 1.00 Bentonite	E																	1	
From To Technique Date/Time Strike At Time Elapsed Rise To Casing Sealed Hole Dla. Depth Casing Dia. Depth Top Base Backfill 0.00 1.20 Inspection Pit 116 2.85 0 0.00 0.00 0.20 Concrete 1.20 2.85 Window Sample 0.20 1.00 Bentonite	-																	†	
From To Technique Date/Time Strike At Time Elapsed Rise To Casing Sealed Hole Dla. Depth Casing Dia. Depth Top Base Backfill 0.00 1.20 Inspection Pit 116 2.85 0 0.00 0.00 0.20 Concrete 1.20 2.85 Window Sample 0.20 1.00 Bentonite	ţ																		
From To Technique Date/Time Strike At Time Elapsed Rise To Casing Sealed Hole Dla. Depth Casing Dia. Depth Top Base Backfill 0.00 1.20 Inspection Pit 116 2.85 0 0.00 0.00 0.20 Concrete 1.20 2.85 Window Sample 0.20 1.00 Bentonite	-																	‡	
From To Technique Date/Time Strike At Time Elapsed Rise To Casing Sealed Hole Dla. Depth Casing Dia. Depth Top Base Backfill 0.00 1.20 Inspection Pit 116 2.85 0 0.00 0.00 0.20 Concrete 1.20 2.85 Window Sample 0.20 1.00 Bentonite	F																	1	
From To Technique Date/Time Strike At Time Elapsed Rise To Casing Sealed Hole Dla. Depth Casing Dia. Depth Top Base Backfill 0.00 1.20 Inspection Pit 116 2.85 0 0.00 0.00 0.20 Concrete 1.20 2.85 Window Sample 0.20 1.00 Bentonite	E																	1	
From To Technique Date/Time Strike At Time Elapsed Rise To Casing Sealed Hole Dla. Depth Casing Dia. Depth Top Base Backfill 0.00 1.20 Inspection Pit 116 2.85 0 0.00 0.00 0.20 Concrete 1.20 2.85 Window Sample 0.20 1.00 Bentonite							<u> </u>					I	0. =/- : :					<u> </u>	
0.00 1.20 Inspection Pit 116 2.85 0 0.00 0.00 0.20 Concrete 120 2.85 Window Sample 0.20 1.00 Bentonite			_ING T			Date/Time				Casing	Sealed					Top			cfill
1.20 2.03 VVIIIOUW Sample 1.00 Denomine 1.00 2.85 Gravel	0.00	1.20		Inspecti	on Pit			napood		9						0.00	0.20	Conc	rete
	1.20	∠.ၓီ	´	vviiiuOW 8	Jampie											1.00	2.85	Gra	/el

Remarks

1. Groundwater seepage encountered at 2.40m. 2. Terminated at 2.85m due to refusal.

Termination Depth: 2.85m

Arcadis Consulting (UK) Ltd

Project Otterpool Park

Project No. UA008926 Easting (OS mE) **611608.35** Shepway District Council

Ground Level (mAOD) 69.87 Northing (OS mN) 136750.44

Start Date 14/08/2017 End Date 14/08/2017

Scale **1:50** Sheet 1 of 1

	-, -																	
SAN	1PLES			Т	ESTS	-Se					STRAT	ГА						14-11/
Depth	T	ype/ No.	Depth	Type/ No.	Results	Water Strikes					Description				Legend	Depth (Thickness)	Level	Install/ Backfill
0.10 - 0.		ES1	0.10	PID	<1ppm		TOPSOIL	.; Grass	over brow	n slightly	gravelly sa	ndy clay w	vith rootlets.		ale	(0.30)	-	A C
F			0.30	PID	<1ppm		Firm light	brown sa	indy CLA	Y Sand i	s fine to coa	arse			TX	0.30	69.57	
0.50 - 0.	55	ES2					[HEAD D	EPOSITS]						<u>×</u> _×	(0.60)	1	
0.50 - 0. 0.50 - 0.	70	B7 D5													×_×_	(0.60)	1	
- 0.90 - 1. - 0.90 - 1.	00	B8 D6	0.90	PID	<1ppm		Firm oran	ige and b	rown sand	dy CLAY.	Sand is fin	e to mediu	ım.		^— -	0.90	68.97	
1.00 - 1.	10 1	ES3 B9	1.20	SPT(S)	N=8 (1,1/2,2,3,1)	0	[HEAD D			•					X_X X	(0.50)	1	
1.40 - 2.		B10	1.40	PID	<1ppm	,	0::«1						htly sandy CL	N/ O 1:	X	1.40	68.47	
F							fine.	•	•	prown pro	own mottled	i grey sligr	ntiy sandy CL	AY. Sand is	X		ţ	
1.80 - 1.	90	ES4					[HEAD D	EPOSITS]						<u>×</u> _×	(0.90)	†	
F			2.00	SPT(S)	N=22 (1,7/8,5,5,4)	0									X_X_		+	
2.30 - 3.	00	B11	2.00 2.30	PID PID	<1ppm <1ppm											2.30	67.57	
2.50 - 5.			2.50	110	Тррш		Firm brov			subangula	ar to angula	r fine to co	oarse GRAVE	L of	-	2.50	07.57	
t							[HYTHE	ORMATI	ON]							(0.70)	1	
-															-		1	
-			3.00	SPT(S)	N>50 (9,15/50 for 20mm)	0									• • • •	3.00 -	66.87	11.
ţ																		
-																	‡	
ļ																	1	
F																	1	
F																-	Ī	
E																	1	
E																	ł	
ŧ																	1	
Ł																	1	
ļ.																	1	
<u> </u>																	1	
†																	†	
F																	†	
F																-	+	
F																	1	
E																	I	
E																	ł	
Ł																	1	
-																-	t	
-																		
-																	‡	
‡																	1	
F																	†	
F																-	Ī	
F																	-	
E																	ł	
E																	ł	
E																	1	
ţ																	†	
ţ																	†	
F																	†	
ţ																		
Ļ																	‡	
	DRILLI	NG T	ECHNIQU	JE		WATER	R OBSERVA	ATIONS			H	OLE/CASI	ING DIAMETE	R I		BACKF	ILL	
From	То		Techn	ique		Strike At	Time Elapsed	Rise To	Casing	Sealed	Hole Dla.	Depth	Casing Dia.	Depth	Тор	Base	Bacl	
0.00 1.20	1.20 3.00		Inspecti Window S	on Pit Sample							116	3.00	0	0.00	0.00 0.20	0.20 1.00	Conc	nite
															1.00	3.00	Gra	/el
Domarka																		

Remarks

1. Groundwater seepage encountered at 1.90m. 2. Terminated at 3.00m due to refusal.

Termination Depth: 3.00m

Equipment Used

Dando Terrier

Project
Otterpool Park
Client

Shepway District Council

Project No. **UA008926** Easting (OS mE) **611867.54**

Ground Level (mAOD) **68.45**Northing (OS mN) **136919.17**

Start Date 15/08/2017 End Date 15/08/2017

1:50 Sheet 1 of 1

Description Type Description Pop No. Pop	SAN	//PLES			TI	ESTS	es es					STRAT	ГА				Double		Install/
Control Set	Depth	n Ty	pe/	Depth	Type/	Results	Water Strikes				[Description				Legend	Depth (Thickness	Level	Install/ Backfill
DRILLING TECHNIQUE WALEN COSSETVATIONS Modern from the control of grey slightly gravely GLAY. Sand is fine to course (investion.) G. S. S. S. S. S. S. S. S. S. S. S. S. S.	0.10 - 0.	15 ES	S1	0.10		<1ppm		TOPSOIL	.; Grass	over brow	n slightly	gravelly sa	ndy clay w	vith rootlets.		ήις	(0.30)	+	4 6.5
DRILLING TeCHNIGUE WATER OBSERVATIONS HOLE/CASING DIAMETER BACKFILL For To Tochnique Daviding State Daviding Daviding Daviding Daviding State Daviding	0.10 - 0.	30 1	5	0.30	PID	<1ppm		Loose ora	ange and	brown sli	ghtly san	dv sliahtlv a	ravelly CL	AY. Sand is fi	ine to	alv.		68.15	
DRILLING TeCHNIGUE WATER OBSERVATIONS HOLE/CASING DIAMETER BACKFILL For To Tochnique Daviding State Daviding Daviding Daviding Daviding State Daviding								coarse. (Gravel is	subround								ł	
DRILLING TeCHNIGUE WATER OBSERVATIONS HOLE/CASING DIAMETER BACKFILL For To Tochnique Daviding State Daviding Daviding Daviding Daviding State Daviding	0.50 - 0.	70 D	6	0.80	PID	<1ppm		[ALLOVIC	JIVI DEFC	Jorroj							(4.40)	-	
DRILLING TeCHNIGUE WATER OBSERVATIONS HOLE-CASING DIAMETER BACKIFILL From To Techniques Days Techniques Description Techniques Description Techniques Description Techniques Description Techniques Description Techniques Description Techniques Description Techniques Description Techniques Description Techniques Description Techniques Description Techniques Description Techniques Description Techniques Description Techniques Description Techniques Description Techniques Description Techniques Description Techniques Description Techniques Technique	0.70 - 1.	.00 D	7			·											(1.10)	‡	
DRILLING TeCHNIGUE WATER OBSERVATIONS HOLE/CASING DIAMETER BACKFILL For To Tochnique Daviding State Daviding Daviding Daviding Daviding State Daviding	Г			1.20	SPT(S)	N=8 (1,2/2,2,2,2)	0											†	
1,60 - 1,50 E54 1,50 - 2,50 E14 2,00 E15 2,00 PID 1,50	1.40 - 1.	60 B	13	1.40	PID	<1ppm		Firm to st	iff orange	and brov	vn mottle	d arev sliaht	tlv sandv (CLAY. Sand is	s fine to	X	1.40	67.05	
DRILLING TECHNIQUE	1.60 - 1.	80 ES	54					medium.	-			3 , 3	, ,			×		1	
DRILLING Technique Description Technique Description Technique Description Technique Description Technique Technique Description Technique Techniq	-							נוובאטט	Li Odiic	' 1						×	(0.80)	1	
Medium dense to dense green slightly clayey SAND. Sand is fine to coatrue. 2.00 (0.00)				2.00	PID	<1ppm										×		†	ŀ.°H.∙
280 - 200 B9	F			2.20	PID	<1ppm					en slightl	y clayey SA	ND. Sand	d is fine to coa	irse.		2.20	66.25	
DRILLING TECHNIQUE	E							ן וובאט ט	LFOSITE	']							(0.80)	-	
Spring N=42 (5.77 (8.9.18) To Spring N=42 (5.77 (8.9.18) To Spring S	- 2.80 - 3.	00 B	9														(0.00)	-	
DRILLING TECHNIQUE	L				SPT(S)	N=42 (5,7/7,8,9,18)	0									11111	3.00	65.45	<u>₩</u>
From To Technique Date/Time Strike At 1 Time Elapsed Rise To Casing Sealed Hole Dla. Depth Casing Dia. Depth Top Base Backfill 15/08/2017 10:30 2.85 20 2.00 0.00 116 3.00 0 0.00 0.00 0.20 Concrete 0.20 1.00 Bentonite	-			3.00	PID	<1ppm												†	
From To Technique Date/Time Strike At 1 Time Elapsed Rise To Casing Sealed Hole Dla. Depth Casing Dia. Depth Top Base Backfill 15/08/2017 10:30 2.85 20 2.00 0.00 116 3.00 0 0.00 0.00 0.20 Concrete 0.20 1.00 Bentonite	E						1											Ī	
From To Technique Date/Time Strike At 1 Time Elapsed Rise To Casing Sealed Hole Dla. Depth Casing Dia. Depth Top Base Backfill 15/08/2017 10:30 2.85 20 2.00 0.00 116 3.00 0 0.00 0.00 0.20 Concrete 0.20 1.00 Bentonite	-																	f	
From To Technique Date/Time Strike At 1 Time Elapsed Rise To Casing Sealed Hole Dla. Depth Casing Dia. Depth Top Base Backfill 15/08/2017 10:30 2.85 20 2.00 0.00 116 3.00 0 0.00 0.00 0.20 Concrete 0.20 1.00 Bentonite	-																	1	
From To Technique Date/Time Strike At 1 Time Elapsed Rise To Casing Sealed Hole Dla. Depth Casing Dia. Depth Top Base Backfill 15/08/2017 10:30 2.85 20 2.00 0.00 116 3.00 0 0.00 0.00 0.20 Concrete 0.20 1.00 Bentonite	F																	†	
From To Technique Date/Time Strike At 1 Time Elapsed Rise To Casing Sealed Hole Dla. Depth Casing Dia. Depth Top Base Backfill 15/08/2017 10:30 2.85 20 2.00 0.00 116 3.00 0 0.00 0.00 0.20 Concrete 0.20 1.00 Bentonite	E																	Ī	
From To Technique Date/Time Strike At 1 Time Elapsed Rise To Casing Sealed Hole Dla. Depth Casing Dia. Depth Top Base Backfill 15/08/2017 10:30 2.85 20 2.00 0.00 116 3.00 0 0.00 0.00 0.20 Concrete 0.20 1.00 Bentonite	E																	ł	
From To Technique Date/Time Strike At 1 Time Elapsed Rise To Casing Sealed Hole Dla. Depth Casing Dia. Depth Top Base Backfill 15/08/2017 10:30 2.85 20 2.00 0.00 116 3.00 0 0.00 0.00 0.20 Concrete 0.20 1.00 Bentonite	-																	1	
From To Technique Date/Time Strike At 1 Time Elapsed Rise To Casing Sealed Hole Dla. Depth Casing Dia. Depth Top Base Backfill 15/08/2017 10:30 2.85 20 2.00 0.00 116 3.00 0 0.00 0.00 0.20 Concrete 0.20 1.00 Bentonite	-																	‡	
From To Technique Date/Time Strike At 1 Time Elapsed Rise To Casing Sealed Hole Dla. Depth Casing Dia. Depth Top Base Backfill 15/08/2017 10:30 2.85 20 2.00 0.00 116 3.00 0 0.00 0.00 0.20 Concrete 0.20 1.00 Bentonite	F																	†	
From To Technique Date/Time Strike At 1 Time Elapsed Rise To Casing Sealed Hole Dla. Depth Casing Dia. Depth Top Base Backfill 15/08/2017 10:30 2.85 20 2.00 0.00 116 3.00 0 0.00 0.00 0.20 Concrete 0.20 1.00 Bentonite	E																	1	
From To Technique Date/Time Strike At 1 Time Elapsed Rise To Casing Sealed Hole Dla. Depth Casing Dia. Depth Top Base Backfill 15/08/2017 10:30 2.85 20 2.00 0.00 116 3.00 0 0.00 0.00 0.20 Concrete 0.20 1.00 Bentonite	-																	1	
From To Technique Date/Time Strike At 1 Time Elapsed Rise To Casing Sealed Hole Dla. Depth Casing Dia. Depth Top Base Backfill 15/08/2017 10:30 2.85 20 2.00 0.00 116 3.00 0 0.00 0.00 0.20 Concrete 0.20 1.00 Bentonite	Ļ																	ļ	
From To Technique Date/Time Strike At 1 Time Elapsed Rise To Casing Sealed Hole Dla. Depth Casing Dia. Depth Top Base Backfill 15/08/2017 10:30 2.85 20 2.00 0.00 116 3.00 0 0.00 0.00 0.20 Concrete 0.20 1.00 Bentonite	F																	Ť	
From To Technique Date/Time Strike At 1 Time Elapsed Rise To Casing Sealed Hole Dla. Depth Casing Dia. Depth Top Base Backfill 15/08/2017 10:30 2.85 20 2.00 0.00 116 3.00 0 0.00 0.00 0.20 Concrete 0.20 1.00 Bentonite	E																	Ī	
From To Technique Date/Time Strike At 1 Time Elapsed Rise To Casing Sealed Hole Dla. Depth Casing Dia. Depth Top Base Backfill 15/08/2017 10:30 2.85 20 2.00 0.00 116 3.00 0 0.00 0.00 0.20 Concrete 0.20 1.00 Bentonite	-																	†	
From To Technique Date/Time Strike At 1 Time Elapsed Rise To Casing Sealed Hole Dla. Depth Casing Dia. Depth Top Base Backfill 15/08/2017 10:30 2.85 20 2.00 0.00 116 3.00 0 0.00 0.00 0.20 Concrete 0.20 1.00 Bentonite	ļ.																	‡	
From To Technique Date/Time Strike At 1 Time Elapsed Rise To Casing Sealed Hole Dla. Depth Casing Dia. Depth Top Base Backfill 15/08/2017 10:30 2.85 20 2.00 0.00 116 3.00 0 0.00 0.00 0.20 Concrete 0.20 1.00 Bentonite	F																	‡	
From To Technique Date/Time Strike At 1 Time Elapsed Rise To Casing Sealed Hole DIa. Depth Casing Dia. Depth Top Base Backfill 15/08/2017 10:30 2.85 20 2.00 0.00 116 3.00 0 0.00 0.20 Concrete 0.20 1.00 Bentonite	E																	Ī	
From To Technique Date/Time Strike At 1 Time Elapsed Rise To Casing Sealed Hole Dla. Depth Casing Dia. Depth Top Base Backfill 15/08/2017 10:30 2.85 20 2.00 0.00 116 3.00 0 0.00 0.00 0.20 Concrete 0.20 1.00 Bentonite	-																	1	
From To Technique Date/Time Strike At 1 Time Elapsed Rise To Casing Sealed Hole DIa. Depth Casing Dia. Depth Top Base Backfill 15/08/2017 10:30 2.85 20 2.00 0.00 116 3.00 0 0.00 0.20 Concrete 0.20 1.00 Bentonite	-																	†	
From To Technique Date/Time Strike At 1 Time Elapsed Rise To Casing Sealed Hole DIa. Depth Casing Dia. Depth Top Base Backfill 15/08/2017 10:30 2.85 20 2.00 0.00 116 3.00 0 0.00 0.20 Concrete 0.20 1.00 Bentonite	-																	1	
From To Technique Date/Time Strike At 1 Time Elapsed Rise To Casing Sealed Hole Dla. Depth Casing Dia. Depth Top Base Backfill 15/08/2017 10:30 2.85 20 2.00 0.00 116 3.00 0 0.00 0.00 0.20 Concrete 0.20 1.00 Bentonite	E						1											Ŧ	
From To Technique Date/Time Strike At 1 Time Elapsed Rise To Casing Sealed Hole DIa. Depth Casing Dia. Depth Top Base Backfill 15/08/2017 10:30 2.85 20 2.00 0.00 116 3.00 0 0.00 0.20 Concrete 0.20 1.00 Bentonite	Ė						1											1	
From To Technique Date/Time Strike At 1 Time Elapsed Rise To Casing Sealed Hole DIa. Depth Casing Dia. Depth Top Base Backfill 15/08/2017 10:30 2.85 20 2.00 0.00 116 3.00 0 0.00 0.20 Concrete 0.20 1.00 Bentonite	-						1											†	
From To Technique Date/Time Strike At 1 Time Elapsed Rise To Casing Sealed Hole DIa. Depth Casing Dia. Depth Top Base Backfill 15/08/2017 10:30 2.85 20 2.00 0.00 116 3.00 0 0.00 0.20 Concrete 0.20 1.00 Bentonite	-						1											ļ	
From To Technique Date/Time Strike At 1 Time Elapsed Rise To Casing Sealed Hole DIa. Depth Casing Dia. Depth Top Base Backfill 15/08/2017 10:30 2.85 20 2.00 0.00 116 3.00 0 0.00 0.20 Concrete 0.20 1.00 Bentonite	E																	+	
From To Technique Date/Time Strike At 1 Time Elapsed Rise To Casing Sealed Hole DIa. Depth Casing Dia. Depth Top Base Backfill 15/08/2017 10:30 2.85 20 2.00 0.00 116 3.00 0 0.00 0.20 Concrete 0.20 1.00 Bentonite																		-	
From To Technique Date/Time Strike At 1 Time Elapsed Rise To Casing Sealed Hole DIa. Depth Casing Dia. Depth Top Base Backfill 15/08/2017 10:30 2.85 20 2.00 0.00 116 3.00 0 0.00 0.20 Concrete 0.20 1.00 Bentonite	-																	1	
From To Technique Date/Time Strike At 1 Time Elapsed Rise To Casing Sealed Hole DIa. Depth Casing Dia. Depth Top Base Backfill 15/08/2017 10:30 2.85 20 2.00 0.00 116 3.00 0 0.00 0.20 Concrete 0.20 1.00 Bentonite	F																	†	
From To Technique Date/Time Strike At 1 Time Elapsed Rise To Casing Sealed Hole DIa. Depth Casing Dia. Depth Top Base Backfill 15/08/2017 10:30 2.85 20 2.00 0.00 0.00 116 3.00 0 0.00 0.20 0.20 Concrete 0.20 1.00 Bentonite	-																	†	
From To Technique Date/Time Strike At 1 Time Elapsed Rise To Casing Sealed Hole DIa. Depth Casing Dia. Depth Top Base Backfill 15/08/2017 10:30 2.85 20 2.00 0.00 116 3.00 0 0.00 0.20 Concrete 0.20 1.00 Bentonite																			
15/08/2017 10:30 2.85 20 2.00 0.00 0.00 116 3.00 0 0.00 0.00 0.20 Concrete 0.20 1.00 Bentonite			IG TE			Date/Time				Casina	Spaled					Ton			fill
1.00 Bentonte 1.00 3.00 Gravel	1 10111	10		reculli	que							1				0.00	0.20	Conc	rete
																1.00	3.00	Grav	/el

Remarks

1. Groundwater encountered at 2.80m, rising to 2.00m after 20 mins. 2. Terminated at 3.00m due to refusal.

Termination Depth: 3.00m

Contractor

Project
Otterpool Park
Client

Shepway District Council

Project No. UA008926 Easting (OS mE) **612461.34** Ground Level (mAOD)
73.99
Northing (OS mN)
137157.15

Start Date 15/08/2017 End Date 16/08/2017

Sheet 1 of 1

SAN	/IPLES	3		Т	ESTS	- Se					STRAT	ТА				D#-		Install/
Depth	n	Type/ No.	Depth	Type/ No.	Results	Water Strikes				I	Description				Legend	Depth (Thickness	Level	Backfill
0.05 - 0.		ES1	0.05	PID	<1ppm		TOPSOIL	.; Grass o	ver brow	n slightly	gravelly sa	ndy clay w	ith rootlets.		VIC	(0.20)	1	4 64
0.20 - 0.	40	D7	0.20	PID	<1ppm		Soft to fir	m orange	and brow	n slightly	sandy sligh angular, fine	htly gravell	y CLAY. San	d is fine to		0.20 (0.25)	73.79	
0.50 - 0.		ES2	0.50	PID	<1ppm		[HEAD D	EPOSITS]								0.45	73.54	
- 0.50 - 0. - 0.50 - 0.	70	B11 D5					Firm oran	ige and br	own sligh gular, fine	ntly sandy e to coars	gravelly Cl e limestone	LAY. Sand e and flint.	d is fine to coa	ar. Gravel		(0.75)	-	1/1/2
0.70 - 1. 0.70 - 1.	00	B12 D6	1.00	PID	<1ppm		[HEAD D									(0.75)	1	
1.00 - 1. - 1.20 - 2.		ES3 B15	1.20	SPT(S)	N=8 (1,2/2,2,2,2)	0									X	1.20	72.79	
-			1.20	PIĎ ´	<1ppm		Firm to st			nge sand	y CLAY. Sa	and is fine	to medium		<u>×</u> ×			
- 1.60 - 1.	70	D8															‡	
1.80 - 2.	00	ES4													X_X_X_X_X_X_X_X_X_X_X_X_X_X_X_X_X_X_X_	(1.20)	1	
2.00 - 2.	40	B13	2.00	SPT(S)	N=48 (4,5/8,8,17,15)	0									×		†	
2.20 - 2.	30	D10	2.00	PID	<1ppm										<u>×_×</u>		-	
2.40 - 2.	80	B14	2.50	PID	<1ppm		Stiff to ve	ry stiff gre	y mottled	d orange	very sandy	CLAY. Sai	nd is fine to c	oarse.	×_ ×	2.40	71.59	
- 2.70 - 2.	80	D9	2.00	110	Т		[HEAD D	ÉPOSITS]	ĺ		, ,					(0.40)		
			2.80	SPT(S)	N=39 (4,4/5,8,11,15)	0									<u> </u>	2.80	71.19	
-																	t	
-																	ļ	
-																	‡	
ļ																		
-																	1	
-																	†	
F																	1	
F																	†	
F																	1	
F																	Ī	
F																	Ŧ	
[I	
E																	ł	
-																	ł	
-																	1	
ţ																	1	
-																	ļ	
-																	ţ	
-																		
-																	‡	
-																	1	
-																	‡	
F																	ţ	
Ė																	‡	
F																	‡	
F																	1	
F																	1	
F																	Ī	
F																	-	
F																	+	
F																	-	
E																	-	
E																	·	
E																	1	
																	<u> </u>	
	DRILL	 ING T	ECHNIQU	JE		WATE	R OBSERVA	ATIONS			Н	OLE/CASI	NG DIAMETI	ER		BACKF	ILL ILL	
From	То		Techn	ique	Date/Time	Strike At	Time Elapsed	Rise To	Casing	Sealed	Hole Dla.	Depth	Casing Dia.	Depth	Тор	Base	Back	
0.00 1.20	1.20 2.80		Inspecti Window								116	2.80	0	0.00	0.00 0.20	0.20 1.00	Conc	nite
	-			•											1.00	2.80	Grav	/el

Remarks

1. Groundwater seepage encountered at 2.40m. 2. Terminated at 2.80m due to refusal.

Termination Depth: 2.80m

Project Otterpool Park

Shepway District Council

Project No. UA008926 Easting (OS mE) **612704.14** Ground Level (mAOD) 83.26 Northing (OS mN) 136191.38

Start Date 16/08/2017 End Date 16/08/2017

Sheet 1 of 1

Г	SAM	IPLES	s		T	ESTS	es es					STRAT	ГА				Dth		Install/
	Depth	ı	Type/ No.	Depth	Type/ No.	Results	Water Strikes				[Description				Legend	Depth (Thickness	Level	Backfill
	0.05 - 0. 0.10 - 2.		D4 ES1	0.10	PID	<1ppm		TOPSOIL	; Grass	over brow	n slightly	gravelly sa	ndy clay w	ith rootlets.		ilk	(0.20) 0.20		Ⅲ ≣Ⅲ
	0.30 - 0.4		ES2	0.30	PID	<1ppm		MADE GI	ROUND:	Soft brow	n mottled	black sligh f limestone,	tly sandy o	clayey subrou	nded to	alk alk	0.20	83.06	
	0.50 - 0.		B10 D5					subangui	ar line to	coarse G	RAVELO	i iimestone,	mini and c	ļuartz.		مالا:	(0.50)	Ŧ	
(0.50 - 0. 0.70 - 1.	00	B11	0.80	PID	<1ppm		Soft brow	nish grey	mottled o	range Cl	_AY.					0.70	82.56	727
F	0.70 - 1.0 1.00 - 1.0		D6 ES3	0.00	110	Т		[HEAD D	EPOŠITŠ]	Ū					×_×_	(0.50)	1	
H	1.20 - 1.		B12	1.20	SPT(S)	N=4 (1,1/1,1,1,1)	0	0 " "				011.7				×	1.20	82.06	255
ļ				1.20	PID	<1ppm		Soft to fire	n blueisn EPOSITS	grey mot	tied oran	ge SILI.				X X X		1	11/1
F																$\times \times \times \times$	4	Ť	
[·	1.80 - 2.0	00	D7													X X X X X X X X X X X X X X X X X X X	(1.30)	-	1//
- 2	2.00 - 2.	50	B13	2.00 2.00	SPT(S) PID	N=12 (3,3/3,3,3,3) <1ppm	0									XXX		†	
ŀ				2.00	110	Т													25%
- 2	2.50 - 2.	30	B14	2.50	PID	<1ppm		Firm grey	mottled (orange Cl	۸٧					X X X	2.50	80.76	1//
ŧ,	0.00	.	D0					[HEAD D	EPOSITS	i]	-AI.					×_×_	(0.40)	†	1//
E	2.80 - 2.9 2.90 - 3.0	00	D8 D9	2.90	PID	<1ppm		Firm gree	n mottled	orange s	lightly sa	ndv SILT.	Sand is fin	e to medium.		× × × ×	2.90 3.00	80.36 80.26	1//
ŀ								(HEAD D	EPOSITS	1						1	3.00	00.20	
ţ																			
F																		†	
F																		1	
F																		Ŧ	
E																		1	
Ł																		‡	
þ																		1	
F																		1	
F																		Ť	
E																		1	
F																		†	
ţ																		†	
F																		‡	
F																		1	
E																		1	
-																			
-																			
F																		†	
F																		†	
F																		Ŧ	
E																		1	
Ŀ																		1	
ţ																		†	
ļ																		†	
F																		Ť	
E																		1	
F																		†	
ŧ																		†	
þ																		‡	
F																		†	
E																		Ī	
Ē					<u> </u>		<u> </u>										<u> </u>	<u> </u>	
-	From	DRILI To	ING T	ECHNIQU Techni		Date/Time	WATER Strike At	R OBSERVA Time Elapsed	TIONS Rise To	Casing	Sealed	Hole Dla.	OLE/CASI Depth	NG DIAMETE Casing Dia.	ER Depth	Тор	BACKF Base	ILL Back	cfill
	0.00	1.20		Inspecti	ion Pit	Sato/Time	Jumo At	о Дироси	1.00 10	Casing	Coulou	116	3.00	0	0.00	0.00 0.50	0.50 3.00	Arisir Bento	ngs
1 '	1.20	3.00	'	Window S	sample											0.00	5.55	Denilo	

Remarks

1. Groundwater seepage encountered at 1.80m. 2. Terminated at 3.00m due to refusal. 3. Hole collapsed from 3.00m to 2.00m due to water strike.

Equipment Used

Dando Terrier

Project
Otterpool Park
Client

Shepway District Council

Project No. UA008926 Easting (OS mE) **612443.89**

Ground Level (mAOD) 73.64 Northing (OS mN) 137140.44

Start Date 16/08/2017 End Date 16/08/2017

Sheet 1 of 1

SAN	/IPLES	3		T	ESTS	la se		'			STRA	ΤΑ		'				,
Depth	1	Type/ No.	Depth	Type/ No.	Results	Water Strikes				[Description				Legend	Depth (Thickness)	Level	Install/ Backfill
0.05 - 0. 0.05 - 0.	15 15	D5 ES2	0.05	PID	<1ppm								ith rootlets.		416;	(0.15) 0.15	73.49	
- 0.03 - 0.	"	LUZ	0.20	PID	<1ppm		Gravel is	subround	ed to sub				/. Sand is fine I limestone.	e to coarse.		(0.35)	100	
- 0.50 - 0. - 0.50 - 0.		ES1 B15	0.50 0.60	PID PID	<1ppm <1ppm		[HEAD D	EPOSITS	and brow	n sandy	CLAY. San	d is fine to	medium			0.50	73.14	
0.50 - 0.	70	D6 B16	0.00	110	Терри		[HEAD D			oaay	02 04	u 10 11110 to	ouiu				-	244
0.70 - 1.	00	D7 ES3	1.00	PID	<1ppm											(0.80)	<u> </u>	
F			1.20		N=7 (2,2/1,2,2,2)	0											ļ	7//
- 1.30 - 1.	80	B12	1.30	PID	<1ppm		Firm brov			orange C	LAY.				<u>×_×</u>	1.30	72.34	252
1.70 - 1.	80	D11					[HEAD D	EPUSITS	1						×	(0.50)	Ī	
1.80 - 2.	00	D8	1.80	PID	<1ppm					orange sa	indy CLAY.	Sand is fi	ne to medium		X	1.80 (0.20)	71.84	121
- 2.00 - 2. - 2.10 - 2.		ES4 D9	2.00 2.00	SPT(S) PID	N=26 (4,4/5,5,6,10) <1ppm	0	[HEAD D Stiff brow			range Cl	AY			-	/^— -	(0.20) 2.00	71.64	
2.20 - 2.	60	B14					[HEAD D			nungo ot	J (1).				<u>×_×</u>	(0.60)	ļ	25%
+	_		2.50	PID	<1ppm										<u>×_×</u>		‡ 	7//
- 2.60 - 2.	90	B13	2.70	PID	<1ppm		Dense br [HEAD D	ownish gr	ey mottle	d orange	slightly silty	y fine to co	arse SAND.			2.60	71.04	
2.90 - 3.	00	D10	3.00	SPT(S)	N=51 (9,10/10,15,12,14)	0	[ITEAD D	LF OOH O	1							(0.40)	70.64	4/1
E			3.00	351(3)	14-51 (9,10/10,15,12,14)	"										3.00	T 70.04	
E																	<u> </u>	
-																	ŧ	
t																		
Ŀ																	<u> </u>	
ţ																	‡	
ţ																	ļ	
-																	†	
-																		
_																	‡	
-																	‡	
-																	ļ	
F																	‡	
ļ																	‡	
-																	‡	
F																	†	
F																	1	
F																	Ī	
E																	ł	
F																	+	
E																	I	
E																	l	
t																	ł	
t																	l	
F																-	†	
t																	†	
Ł																	‡	
ţ																		
ţ																	†	
F																.	†	
ţ																	‡	
ļ.																	‡	
ţ																	‡	
F																	†	
<u> </u>	_					1	1										 	
		ING T	ECHNIQL				R OBSERVA						NG DIAMETE			BACKF		
From 0.00	To 1.20	-	Techni		Date/Time	Strike At	Time Elapsed	Rise To	Casing	Sealed	Hole Dla. 116	Depth 3.00	Casing Dia.	Depth 0.00	Top 0.00	0.30	Back Arisir	
1.20	3.00		Window S	Sample											0.30	3.00	Bento	

Remarks

1. Groundwater not encountered. 2. Terminated at 3.00m due to refusal.

Project
Otterpool Park
Client

Shepway District Council

Project No. UA008926 Easting (OS mE) **612710.09** Ground Level (mAOD) **82.23**Northing (OS mN) **136342.97**

Start Date 17/08/2017 End Date 17/08/2017

Sheet 1 of 1

SA	MPLES	S		Т	ESTS	es es					STRAT	ГА						Install/
Dept	th	Type/ No.	Depth	Type/ No.	Results	Water					Description				Legend	Depth (Thickness)	Level	Backfill
		110.		110.			MADE G	ROUND; L	ean-mix	CONCR	ETE.				XXX			. 4 ∵ ¢.5
0.38-0	148	D2														(0.40)	04.00	
- 0.38 - 0 - 0.48 - 0	0.60	ES1	0.50	PID	<1ppm		MADE GF	ROUND; D	ark grey	gravelly	CLAY. Gra	avel is ang	ular, fine to co	oarse		0.40 (8.48) (8.60)	81.75	#::: = = = = = =
-							MADE GF	ROUND; E	Black san	ndy subro	unded to a	ngular fine	to coars GR/	AVEL of	Λ		01.03	
F							(DIICK, IIIII	and iiiies	ione.							_	-	
[
-																-	-	
-																		
_																_		
-																		
Ė																		
-																		
-																		
E																-		
-																		
-																		
Ė																		
-																=	-	
-																		
Ė																-		
[
-																-	-	
E																		
[
-																	-	
E																		
-																		
-																		
E																		
-																-	-	
Ė																		
-																-		
-																		
F																-	-	
É																		
-																	-	
Ė																		
E																_		
-																		
Ė																		
E																		
-																		
						<u> </u>												
From	DRILL To		ECHNIQU		Date/Time		R OBSERVA		Casin -	Seals d	Hole Dla.		NG DIAMETE		Ten	BACKFI Base	LL Back	611
0.00	0.60		Techn		Date/Time	Strike At	Time Elapsed	Rise To	Casing	Sealed	nue Dia.	Depth	Casing Dia.	Depth	Top 0.00 0.15	0.15 0.60	Concr Arisir	ete
															0.13	0.00	AUSII	iyə
Remarks					1								I					

Remarks

1. Groundwater encountered. 2. Terminated at 0.60m due to groundwater inflow.

Project
Otterpool Park
Client **Shepway District Council** Project No. **UA008926** Easting (OS mE) **610977.80**

Ground Level (mAOD) **99.93**Northing (OS mN) **136085.15**

Start Date 16/08/2017 End Date 16/08/2017

Sheet 1 of 1

SAN	/IPLES	3		Т	ESTS	er					STRA	ΤA		<u> </u>		Depth		Install/
Depth	٦ -	Type/ No.	Depth	Type/ No.	Results	Water Strikes				[Description				Legend		Level	Backfill
0.00 - 0.		ES1	0.10	PID	<1ppm		TOPSOIL	.; Grass o	ver brow	n slightly	gravelly sa	ndy clay w	vith rootlets.			(0.30)	1	4 64
-							Soft light	brown slig	htly sand	dy CLAY.	Sand is fin	e to mediu	ım.			0.30	99.63	
- 0.50 - 0. - 0.50 - 0.	55 70	ES2 B11	0.50	PID	<1ppm		[HEAD D	EPOSITS]									ţ	
0.50 - 0. 0.70 - 1.	00	D6 B12 D7														(0.90)	1	
0.70 - 1. 1.00 - 1.	05	ES3	1.00	PID	<1ppm												†	
1.20 - 1.	80	B13	1.20 1.20	SPT(S) PID	N=4 (1,1/1,1,1,1) <1ppm	0	Soft to fir	m light bro EPOSITS]	wn CLAY	ſ.					×	1.20	98.73	
F			1.50	PID	<1ppm		ניובייט	Li oono,							<u>×_</u>		†	
1.80 - 1.	90	ES4													<u>×</u> _ <u>×</u>	(1.00)	†	
1.90 - 2.	00	D8	2.00 2.00	SPT(S) PID	N=14 (1,2/3,3,4,4) <1ppm	0									×		+	
- 2.20 - 2.	70	B14	2.20	PID	<1ppm			dense to ve	ery dense	e green n	nottled oran	ige clayey	SAND. Sand	I is fine to	* * * * * * * * * * * * * * * * * * *	2.20	97.73	
E			2.50	PID	<1ppm		medium. [HEAD D	EPOSITS]								-	†	
- 2.70 - 2. - 2.80 - 3.	80 00	ES5 D9														(1.30)		
3.00 - 3.		B15	3.00	SPT(S)	N=19 (2,3/4,4,5,6)	0										(1.30)	†	
-			3.00	PID	<1ppm													
3.40 - 3.	50	D10	3.50	SPT(S)	N=45 (7,8/9,9,9,18)	0									F-1000	3.50	96.43	
-			3.50	PID	<1ppm												-	
-																	‡	
E																	-	
-																	‡	
Ė																	<u> </u>	
_																	1	
-																	†	
[1	
-																	†	
E																	1	
-																		
Ė																	1	
-																	-	
-																	†	
E																	Ţ	
ļ.																	‡	
E																	Ī	
-																		
-																	†	
E																	1	
-																	†	
E																	1	
-																	†	
Ė																	†	
F																	Ŧ	
-																	†	
<u> </u>																	+	
	DRILL	ING T	ECHNIQU	JE JE		WATE	R OBSERVA	TIONS			Н	OLE/CASI	NG DIAMETI	ER		BACKE	ILL	I
From 0.00	To 1.20		Techn		Date/Time	Strike At	Time Elapsed	Rise To	Casing	Sealed	Hole Dla. 116	Depth 3.50	Casing Dia.	Depth 0.00	Top 0.00	Base 0.20	Back	rete
1.20	3.50		Window	Sample											0.20 1.00	1.00 3.50	Bento Gra	nite
											l							

Remarks

1. Groundwater seepage encountered at 2.90m. 2. Terminated at 3.50m due to refusal.

Termination Depth: 3.50m

Arcadis Consulting (UK) Ltd

Project No. UA008926 Easting (OS mE) **610259.33** Ground Level (mAOD) **71.59**Northing (OS mN) **137376.17**

Start Date 15/08/2017 End Date 15/08/2017

Scale **1:25** Sheet 1 of 1

SAMPLE	ES		TESTS		F &		STRATA				
Depth	Type/ No.	Depth	Type/ No.	Results	Water Strikes		Description	Legend	Depth (Thickness	Level	Install/ Backfill
- 0.20 - 0.20 - 0.20 - 0.20 - 0.50 - 0.50 - 0.50	B1 D2 ES3 B4 D5	-	100			Soft to firm yellowish brow	n slightly gravelly sandy clay with rootlets. In slightly sandy gravelly CLAY with rare cobbles of coarse. Gravel is angular to rounded, fine to coarse	SIE: MA	(0.30)	71.29	
- 1.00 - 1.00 - 1.00	B7 D8 ES9	- - - - - - - - - - - - - - - - - - -							(1.70)		
- 1.50 - 1.50 - 1.50	B10 D1	- - - - - - - - - - -							2.00	60.50	
PLAN DETAIL	LS	-					Remarks		1		
0.5		2.3		Shoring / Stability: Groundw	Support: Stable	None	Groundwater not encountered. 2. Terminated at 2	.00m due to		edrock. mination 2.00r	

JCB 3CX

HK

Checked By

Project No. UA008926 Easting (OS mE) **611605.45** Ground Level (mAOD) **68.56**Northing (OS mN) **137227.56**

Start Date 14/08/2017 End Date 14/08/2017

Scale **1:25** Sheet 1 of 1

SAMPL	ES		TESTS	3	er		STRATA			Depth		Install/
Depth	Type/ No.	Depth	Type/ No.	Results	Water Strikes		Description		Legend	(Thickness)	Level	Backfill
- - - -		- - -				TOPSOIL; Grass over bro	own slightly gravelly sandy clay with	n rootlets.		(0.40)		
- 0.30 - 0.30 - 0.30	B1 D2 ES3	- - - -				coarse. Gravel is angular	rown slightly gravelly sandy SILT. S to rounded, fine to coarse flint.	Sand is fine to	(× × × ×	0.40	68.16	
- 0.60 - 0.60 - 0.60	B4 D5 ES6	- - - -				[HEAD DEPOSITS]			X	(0.40)	07.70	
- - - - - 1.10	B7 D8	- - - - - -				Firm grey mottled orangist [HEAD DEPOSITS]	h brown sandy CLAY. Becoming ve	ery sandy with depth.		0.80	67.76	
1.10 - - - -	ES9	- - - - - -										
- - - 1.80 - 1.80	B10 D1	- - - - - - -								(1.70)		
- 2.30 - 2.30	B2 D3	- - - - - -								-		
-		- - - - -								2.50	t	≝≡≡ ₩≡₩
- - - -		- - - - -								_		
-		- - - - -										
-		- - - - -										
- - - - -		- - - -								-		
-		- - - - -										
- - - - -		- - - - -										
- - - - -		- - - - -										
- DI ANI DETAIL		-					lp .			_		
PLAN DETAIL	LO	2.7		Long Axis	orientat	ion:	Remarks 1. Groundwater not encountered.	2. Terminated at sche	eduled dep	oth.		
0.5				Shoring /		None						
"				Stability:		cription).				Term	nination	Depth:
				Groundw	ater (desc	ωιραστή.					2.50n	

Arcadis Consulting (UK) Limited

ΙP

Project No. UA008926 Easting (OS mE) **613536.69** Ground Level (mAOD) **79.73**Northing (OS mN) **136951.58**

Start Date 18/07/2017 End Date 18/07/2017

Scale **1:25** Sheet 1 of 1

SAMPLES		TESTS		S	P &		STRATA	- Depth		Install/	
Depth	Type/ No.	Depth	Type/ No.	Results	Water Strikes		Description	Legend		Level	Backfill
0.00 - 0.10 0.10 - 0.20	ES1 D2	- 0.10	PID	<1nnm		MADE GROUND; Brown			(0.10) 0.10	70.62	
- 0.10 - 0.20 - 0.20 - 0.30	B6	- 0.10	PID	<1ppm		MADE GROUND; Brown to coarse flint, limestone a	clayey GRAVEL. Gravel is rounded to subangular, fine and sandstone.		1	79.03	
-		-		''		,			(0.25)		
- 0.35 - 0.45 - 0.35 - 0.45	B7 D	0.40	PID	<1ppm		Soft grey mottled orange s to coarse flint, limestone a	slightly gravelly CLAY. Gravel is rounded to angular, fine	×	0.35 (0.10) 0.45	79.38	
- 0.50 - 0.70 - 0.50 - 0.70	B8 D1	- 0.50 -	PID	<1ppm		[HEAD DEPOSITS] Soft becoming firm grey m		/×_×_	0.40	79.20	≡∥≡ ∥≡∥
-			, no			[HEAD DEPOSITS]		×_×_	(0.25)		= =
- 0.70 - 1.00 - 0.70 - 1.00	B9 D2	- 0.70 -	PID	<1ppm		Firm grey mottled orange [HEAD DEPOSITS]	sandy SILT.	$\times \times \times \times$	0.70	79.03	
-		-				[]		(1	≡III≡
-		1.00	PID	<1ppm				×××	-		
-		-						$\times \times \times \rangle$			₩Ī₩
-		-						(
-		- -						(₩Ë₩ ₩₩
- - 1.50	B10	- - 1.50	PID	<1ppm				(₩Ë₩ ■₩■
- 1.50 -	D3	-		''				((1.80)		
-		-						(
-		-						(Į l	ııı ≡ III
		-						(
- 2.00 - 2.00	B11 D4	— 2.00 -	PID	<1ppm				(-		
-		-						(
-		-						(
								(
- 2.50 - 2.50	B12 D5	- 2.50 -	PID	<1ppm				(X X X	2.50	77.23	ш≕ш
-		-									
-		-									
-		-							-	-	
-		-									
-		- -									
-		-									
-		-									
-		-									
-		-									
-		-									
		_							-		
_		-									
-		-									
-											
-		_								-	
- -		-									
		[
_		-									
<u>-</u>		-							-	-	
PLAN DETAILS					1	1	Remarks		1		I
2.9 Long Axis Orientation:					orientat	ion:	1. Groundwater not encountered. 2. Terminated at sch	neduled de	pth.		
				04	Cur- 1	None					
0.4			Shoring / Stability: S			NONE					
	Groundw				cription):	Termination Dep					
					`	. ,				2.50n	
							1		1		

JCB 3CX

Project No. **UA008926** Easting (OS mE) **609988.22** Ground Level (mAOD) **65.76**Northing (OS mN) **136627.81**

Start Date 16/08/2017 End Date 16/08/2017

Scale 1:25 Sheet 1 of 1

SAMPLE			TESTS			STRATA						
	Type/	Б ;;	Type/		Water Strikes					Depth (Thickness)	Level	Install/ Backfill
Depth	No.	Depth	No.	Results	> t3		Description		Legend		1	
- 0.20 - 0.20 - 0.20 - 0.20 - 0.50	B1 D2 ES3	-					own slightly gravelly sandy clay with rootl n sandy CLAY. Sand is fine to medium.	ets.	alic de alic de alic de	(0.30)	1	
- 0.50 - 0.50 	D5 ES6	-								(1.10)		
- 1.00 - 1.00 - 1.00 	B7 D8 ES9	-				Firm light grevish brown sa	andy CLAY. Sand is fine to medium. Ra	re pockets of		1.40	64.36	
- 1.50 - 1.50 - 1.50 	B10 D1	-				white fine SAND (5x5mm) [HEAD DEPOSITS]						
- 2.20 - 2.20 - 2.20	B2 D3									(1.40)		
										2.80	62.96	≡ ≡
PLAN DETAILS 2.3 Long Axis Orientation: Shoring / Support: None							Remarks 1. Groundwater not encountered. 2. To	erminated at sche	duled dep	oth.		
0.5	Stability: S Groundwa									Terr	nination 2.80r	

Arcadis Consulting (UK) Limited

Project No. **UA008926** Easting (OS mE) **611195.12**

Ground Level (mAOD) 66.65 Northing (OS mN) 137037.36

Start Date 21/08/2017 End Date 21/08/2017

Scale **1:25** Sheet 1 of 1

SAMPL	ES		TESTS		اد اد	-	STRATA					
Depth	Type/ No.	Depth	Type/ No.	Results	Water Strikes		Description		Legend	Depth (Thickness)	Level	Install/ Backfill
- - - 0.20 - 0.20	B1 D2		140.				own slightly gravelly sandy clay with i		ale ale	(0.30)	66.35	
- 0.20 - 0.50 - 0.50 - 0.50	B4 D5 ES6	- - - - -					sh brown slightly gravelly slightly sar ounded to subangular, fine to mediur			0.30	-	
		- - - - -								(1.10)		
- 1.00 - 1.00 - 1.00 - 1.00	B7 D8 ES9	- - - - -								-		
- - - 1.50 - 1.50	B10 D1	- - - -				Grey silty fine to medium S [HEAD DEPOSITS]	SAND.			(0.30)	65.25	
- - - 1.80 - 1.80	B2 D3	- - - -				Grey slightly clayey sandy Sand is fine to coarse. [HEAD DEPOSITS]	angular to rounded fine to coarse G	RAVEL of flint.		1.70 (0.30)	64.95	
- - - - 2.20 - 2.20	B4	- - - - -				Grey clayey sandy angula fine to coarse. [HEAD DEPOSITS]	r to rounded fine to coarse GRAVEL	of flint. Sand is		2.00 -	- 64.65	
- 2.20 - - - - -	D5	- - - - -								(0.50)	64.15	
		- - - -										
		- - - - -								-	-	
		- - - -										
		- - - - -										
		- - - - -								-		
		- - - - -										
		- - - - -									-	
-		- - - - -								-	- -	
PLAN DETAI	LS	•	'				Remarks					•
		2.5		Long Axis	Orientati	on:	Groundwater not encountered. 2	 Ierminated at sche 	auled dep	otn.		
0.5				Shoring /								
	Stability:				Not stable ater (desc						nination I	

JCB 3CX

HK

ΙP

Project No. UA008926 Easting (OS mE) **612677.41** Ground Level (mAOD) **77.41**Northing (OS mN) **136513.96**

Start Date **22/08/2017** End Date **22/08/2017** Scale **1:25** Sheet 1 of 1

	SAMPLES TESTS						OTD ATA					
	Type/		Type/		Water Strikes		STRATA		I	Depth (Thickness)	Level	Install/
Depth	No.	Depth	No.	Results	≥ ₹		Description		Legend	l		Backfill
- - - - 0.20 - 0.20 - 0.20	B1 D2 ES3	- - - -				and concrete fragments.	own slightly gravelly sandy clay with re own slightly sandy gravelly CLAY. Sa		Alte Ale	(0.30) 0.30	77.11	
- 0.50 - 0.50	B4 D5	-				medium. Gravel is angula [HEAD DEPOSITS]	r to rounded, fine to coarse flint.			(0.40)	<u> </u>	
0.50	ES6					Firm orangish brown mottl [HEAD DEPOSITS]	ed dark brown sandy CLAY. Sand is	fine to medium.		0.70	76.71	
- 1.00 - 1.00 - 1.00	B7 D8 ES9	-										
- 1.50 - 1.50 - 1.50	B10 D1	-								(1.80)	† - - - - - -	
2.00	B2 D3	-										
- - - - -		-								2.50	74.91	
- - - - -											<u> </u> 	
- - - - -		- - - - -									† - - - -	
-		- - - - - -										
- - - - - -		- - - - -									<u>-</u>	
- - - - -		- - - - -									† 	
- - - - -		-									† - - -	
_											+	
PLAN DETAIL	LS				1	1	Remarks		1	1	1	1
T	2.3 Long Axis Orientation:					ion:	Groundwater not encountered. 2	t. Terminated at sche	duled dep	oth.		
0.5	Stability: S			Stable					To	nination	Denth:	
	Groundwa					ырши).				1611	2.50r	

Project No. UA008926 Easting (OS mE) **610704.30** Ground Level (mAOD) **92.67**Northing (OS mN) **136503.22**

Start Date 15/08/2017 End Date 15/08/2017

Scale **1:25** Sheet 1 of 1

SAMPLI	ES		TESTS	3	er		STRATA			Depth		Install/
Depth	Type/ No.	Depth	Type/ No.	Results	Water Strikes		Description		Legend	(Thickness)	Level	Backfill
- - - - - - 0.30 - 0.30	B1 D2	-				TOPSOIL; Grass over bro	own slightly gravelly sandy clay with rootlets.	51 		(0.50)		
- 0.30 0.60 - 0.60 - 0.60	B4 D5 ES6	-				Soft light brown very sand medium. Occasional pock [HEAD DEPOSITS]	y CLAY with occasional rootlets. Sand is fine tets of orange SAND (15x20mm).	to :	210	0.50	92.17	
- 1.00 - 1.00 - 1.00 - 1.00	B7 D8 ES9	- - - - - - - - -								(1.20)	-	
- - - 1.60 - 1.60	B10 D1	- - - - - - - - - -				Soft brown mottled reddis coarse. Gravel is angular [HEAD DEPOSITS]	h brown slightly gravelly sandy CLAY. Sand is to subrounded, fine to coarse flint.	s fine to		1.70	90.97	
-		-								(1.00)		
- 2.60 - 2.60 -	B2 D3	-						7		2.70	89.97	
-		- - - - - - - - - - - -								-		
PLAN DETAIL	2.6 Long A			Long Axis			Remarks 1. Groundwater not encountered. 2. Termin	nated at schedu	uled dep	th.		
0.5				Stability: Groundw		cription):					ination	

JCB 3CX

HK

Project No. UA008926 Easting (OS mE) **611770.64** Ground Level (mAOD)
73.04
Northing (OS mN)
136484.47

Start Date 17/08/2017 End Date 17/08/2017

Scale **1:25** Sheet 1 of 1

CAMPI	SAMPLES TESTS						STRATA				
	Type/		Type/		Water Strikes			1.	Depth (Thickness)	Level	Install/
Depth	No.	Depth	No.	Results	Str ≪		Description	Legend	1		Backfill
- 0.20 - 0.20 - 0.20	B1 D2 ES3						vn slightly gravelly sandy clay with rootlets.	હાંદ: ુપો હાંદ: ુપો હાંદ: ુપો હાંદ: ુપો હાંદ: ુપો	(0.40)		
- - - 0.60 - 0.60	B4 D5	- - - -				Soft orangish brown sandy (medium.[ALLUVIUM DEPO:	CLAY. Sand is fine to SITS]		(0.50)		
0.60	ES6	-				Soft brown mottled orangish	n brown slightly gravelly sandy CLAY. Sand is fine to		0.90	72.14	
- 1.00 - 1.00 - 1.00	B7 D8 ES9	- - - -				coarse. Gravel is angular to SAND (10-20mm). [HEAD DEPOSITS]	o rounded, fine to coarse flint. Rare bands of black		(0.40)	Ţ	
- - - - 1.50 - 1.50	B10 D1	-				Soft brown mottled orange a fine to coars. Gravel is angual black SAND (10x15mm). [HEAD DEPOSITS]	and grey slightly gravelly slightly sandy CLAY. Sand ular to rounded, fine to coarse flint. Rare pockets of	s	1.30	1	
1.30	Di	- - - -							(0.70)		
- - - -		- - - -					Limestone boulder (0.60 x 0.50 x 0.30n)	2.00		
-		-									
-		-									
- - - - - - -		- - - - - - -								<u> </u>	
PLAN DETAIL	DETAILS 2.2 Long Axis I				l orientat		Remarks I. Groundwater not encountered. 2. Terminated at 2	.00m due to	refusal on b	edrock.	
0.5	Shoring / Stability: S Groundwa				Stable				Terr	nination	

JCB 3CX

HK

Project No. UA008926 Easting (OS mE) **612231.61** Ground Level (mAOD) **80.25**Northing (OS mN) **136228.20**

Start Date **21/08/2017** End Date 21/08/2017

Scale **1:25** Sheet 1 of 1

SAMDI	SAMPLES TESTS						STRATA					
	Type/	Б ;;	Type/		Water Strikes					Depth (Thickness)	Level	Install/ Backfill
Depth	No.	Depth	No.	Results	> W	MADE ODOUBLE D	Description		Legend	(оппева)		
- 0.30 - 0.30 - 0.30	B1 D2 ES3	- - - - - - - -				MADE GROUND; Brown Gravel is angular to round	slightly gravelly sandy SILT. Sand is fin ed, fine to coarse flint and plastic.	e to coarse.		(0.60)	1	
- 0.70 - 0.70 - 0.70 - 0.70	B4 D5 ES6	- - - - - - - -				Soft to firm orangish brown [HEAD DEPOSITS]	n slightly sandy SILT with rare rootlets.		X X X X X X X X X X X X X X X X X X X	0.60	79.65	
1.20 - 1.20 - 1.20 - 1.20	B7 D8 ES9	-								(1.90)	<u> </u>	
- 2.00 - 2.00 - 2.00	B10 D1	- - - - - - - - - - - - - - - - - - -								2.50		
		- - - - - - - - - - - - - - - - - - -								-		
		-								-		
- - - - - - - - - -		- - - - - - - - - - -										
PLAN DETAIL	_S	-					Remarks			-		
T	Long Axis Orientation: Shoring / Support: None						Groundwater not encountered. 2. **	Terminated at sched	duled dep	th.		
0.5	0.5 Stability: State Groundwater										nination	

ΙP

Project No. **UA008926** Easting (OS mE) **610956.18**

Ground Level (mAOD) 101.14 Northing (OS mN) 136019.59

Start Date **22/08/2017** End Date **22/08/2017**

Scale **1:25** Sheet 1 of 1

SAMPL	ES		TESTS		er	STRATA		- Depth		Install/
Depth	Type/ No.	Depth	Type/ No.	Results	Water Strikes	Description	Legend	(Thickness)	Level	Backfill
	110.	-	1.10.			TOPSOIL; Grass over brown slightly gravelly sandy clay with rootlets.	alic de alic alic alic alic alic alic alic alic			
0.30	B1	-					ale de	(0.40)		
- 0.30 - 0.30	D2 ES3					Soft becoming firm orangish brown slightly sandy SILT. Sand is fine to coarse.	sile	0.40	100.74	
		[[HEAD DEPOSITS]	X X X X		Ī	
- 0.60 - 0.60 - 0.60	B4 D5 ES6	-					× × × × ×			
-		[× × × × × × × × × × × × × × × × × × ×		+	
1.00 - 1.00	B7 D8	_					××××	(1.20) -	L	===
1.00	ES9						(
							× × × × × × × × × × × × × × × × × × ×		I I	
-		_					××××			
_						Firm greenish brown sandy CLAY. Sand is fine to coarse. Becoming very sandy	(1.60	99.54	
- 1.80	B10	_				with depth. Occasional pockets of light brown and black SAND (10x10mm). [HEAD DEPOSITS]				
1.80	D1									
-		_						(0.90)	-	
-										
2.40	B2	_								
2.40	D3	-						2.50	98.64	
- - -		-								
- -		-								
-		_						-	<u> </u>	
- -		-							ļ	
- - -		-							<u> </u>	
- - -		-							<u> </u>	
- - -		-							İ	
- - -		-							<u> </u>	
- -		-								
-		_						-	-	
- - -		-							<u> </u>	
- - -		-								
- - -		-							<u> </u>	
- - -		-							<u> </u>	
<u>-</u>		-							İ	
-		-							Ī	
PLAN DETAI	LS	-				Remarks		-		
		2.1		Long Axis	Orientat		eduled dep	pth.		
0.5				Shoring /		None				
0.0				Stability:		cription):		Tern	nination	Depth:
					,				2.50r	

HK

Project No. **UA008926** Easting (OS mE) **611372.01** Ground Level (mAOD) **91.43**Northing (OS mN) **136251.04**

Start Date 15/08/2017 End Date 15/08/2017

Scale 1:25 Sheet 1 of 1

SAMPL	ES		TESTS		er	STRATA		Depth		Install/
Depth	Type/ No.	Depth	Type/ No.	Results	Water Strikes	Description	Legend		Level	Backfill
- 0.30 - 0.30 - 0.30 - 0.50 - 0.50 - 0.50	B1 D2 ES3 B4 D5 ES6	-				TOPSOIL; Grass over brown slightly gravelly sandy clay with rootlets.		(0.60)	90.82	
- 1.00 - 1.00 - 1.00	B7 D8 ES9	-				Soft becoming firm orangish brown sandy CLAY. Sand is fine to coarse. [HEAD DEPOSITS]			30.02	
- 1.60 - 1.60 - 1.60	B10 D1					Cobbles of weathered grey limestone up to 350x		(1.50)		
								2.10	09.32	
0.5	AN DETAILS 2.3 Long Axis Orion Shoring / Sup Stability: Stab Groundwater				Support: Stable	None	d at 2.0m due to r		nination	

Arcadis Consulting (UK) Limited

Project No. UA008926 Easting (OS mE) **611403.93** Ground Level (mAOD) **89.21**Northing (OS mN) **136322.45**

Start Date **22/08/2017** End Date **22/08/2017**

Scale **1:25** Sheet 1 of 1

SAMPLE	ES		TESTS		es		STRATA			Danti		Install/
Depth	Type/ No.	Depth	Type/ No.	Results	Water Strikes		Description		Legend	Depth (Thickness)	Level	Backfill
-	NO.	-	NO.			TOPSOIL; Grass over bro rockhead encountered at (own slightly gravelly sandy clay with root 0.30m.	lets. Limestone	Alte Alte	(0.40)	88.81	
-		-								-		
-		-								-		
-		- - - - - - - - - - - -								- -		
-		-								-		
-		- - - - - - - - -								- - - -		
-		-										
-		-								-		
-		-								-	_	
PLAN DETAIL	LAN DETAILS 1.7 Long Axis Orientation: Shoring / Support: None			Remarks 1. Groundwater not encountered. 2. 1	erminated at 0.40	m due to r	refusal on be	drock.				
Stability: Stable Groundwater (description):							ination 0.40r					

HK

ΙP

Project No. UA008926 Easting (OS mE) **611665.00** Ground Level (mAOD) 96.44 Northing (OS mN) 135941.12

Start Date 16/08/2017 End Date 16/08/2017

Scale **1:25** Sheet 1 of 1

SAMPLI	ES		TESTS		_ s	STRATA				
Depth	Type/ No.	Depth	Type/ No.	Results	Water Strikes	Description	Legend	Depth (Thickness)	Level	Install/ Backfill
- 0.20 - 0.20 - 0.20	B1 D2 ES3	- - - - -	140.		-	TOPSOIL; Grass over brown slightly gravelly sandy clay with rootlets. Yellowish brown slightly clayey sandy GRAVEL with occasional cobbles of	alte alle	(0.30)	96.14	
- - 0.50 - 0.50 - 0.50 - 0.50 -	B4 D5 ES6	- - - - - - -				limestone. Sand is fine to coarse. Gravel is angular to rounded, fine to coarse of limestone. [HEAD DEPOSITS]		5	-	
1.00 - 1.00 - 1.00 - 1.00	B7 D8 ES9	- - - - - - -				Limestone boulder (0.50 x 0.25 x 0.40m.		(1.30)	‡	
- - - - 1.50 - 1.50 - -	B10 D1	- - - - - -				Sandstone gravels rounded to subangular fine to coarse.		1.60	ł	
- - - - - - -		- - - - - - - -								
- - - - - - -		- - - - - - -								
- - - - - -		- - - - - - -								
- - - - - -		- - - - - -							- - - - - - - - - -	
- - - - - -		- - - - - -								
- - - - - -		- - - - - -							† 	
-		- - - - - -								
- Plan Detail	s	-				Remarks			<u> </u>	
T		2.3		Long Axis		on: 1. Groundwater not encountered. 2. Terminated at 1.6	0m due to	refusal on b	edrock.	
0.5	Shoring / Support: None Stability: Stable Groundwater (description):							Tern	nination	

JCB 3CX

HK

Project No. **UA008926** Easting (OS mE) **611234.8**

Ground Level (mAOD) 82.66 Northing (OS mN) 136519.5

Start Date 17/08/2017 End Date 17/08/2017

Scale **1:25** Sheet 1 of 1

SAMPL	ES		TESTS		es		STRATA		Depth		Install/
Depth	Type/ No.	Depth	Type/ No.	Results	Water Strikes		Description	Legend		Level	Backfill
- 0.30 - 0.30	B1 D2					concrete. Sand is fine to	rey slightly clayey sandy GRAVEL with rare cobbles of coarse. Gravel is angular to rounded, fine to coarse crete. Hydrocarbon odour noted.		(0.40)		
- 0.30 - 0.60 - 0.60 - 0.60	B4 D5 ES6	-				MADE GROUND; Soft gr cobbles of concrete. Sand coarse flint, concrete, slag	eenish brown slightly gravelly sandy CLAY with rare d is fine to coarse. Gravel is angular to rounded, fine to g, tarmac, wood and pipe.		0.40	<u> </u>	
1.00 - 1.00 - 1.00	B7 D8 ES9	- - - - - - -								 	
- 1.40 - 1.40 - 1.40 - 1.40	B10 D1 ES2	-							(2.70)	- - - - - -	
2.00 2.00 2.00 2.00	B3 D4 ES5	- - - - - - - -								‡	
- 2.50 - 2.50 - 2.50 - 2.50	B6 D7 ES8	- - - - - - - - -					Burnt wood pieces and rusted metal up to 200 x 150mm.				
3.00 - 3.00 - 3.00	B9 D10 ES1						Black tarmac pieces with odour 50x50mm.		3.10		
-		-									
DI AN DETC		-					Remedia			<u> </u>	
PLAN DETAIL	LS	2.9		Long Axis	orientat	ion:	Remarks 1. Groundwater not encountered. 2. Terminated at 3.1	0m due to	refusal.		
0.5	0.5 Stability			Shoring / Stability: S Groundwa	Stable				Terr	nination 3.10r	

HK

ΙP

Project No. UA008926 Easting (OS mE) **609688.13** Ground Level (mAOD) 68.09 Northing (OS mN) 136765.08

Start Date 21/08/2017 End Date 21/08/2017

Scale **1:25** Sheet 1 of 1

SAMPL	ES		TESTS		er		STRA	TA		Depth		Install/
Depth	Type/ No.	Depth	Type/ No.	Results	Water Strikes		Description		Legend	(Thickness)	Level	Backfill
- - - - - -		-				TOPSOIL; Grass over brook Firm brown slightly gravell angular, fine to coarse qua [HEAD DEPOSITS]	y sandy CLAY. Sand	andy clay with rootlets.	ale: "Ar ale: "Ar	(0.25)	67.84	
- 0.50 - 0.50 	B ES	-								(0.95)	† † † † † †	
1.00 - 1.00 	B ES									1.20	66.89	= = = : = = = :
-		-										
- - - - -		_									<u> </u>	
- - - - -		-										
-		-										
		- - - - - -										
- - - - -		- - - - -										
-		-										
-		-										
- - - - -		- - - - - -									‡ ‡	
L L L PLAN DETAII	LS						Remarks				+	
	0.7 Long Axis Orientation: Shoring / Support: None					Groundwater not encounter	red. 3. No visual	or olfactory	evidence	e of		
0.7	7 Shoring / Support: None Stability: Stable Groundwater (description):								Terr	nination 1.20r	- 1	

SAS

Project No. UA008926 Easting (OS mE) **609855.55** Ground Level (mAOD) **65.22**Northing (OS mN) **136667.01**

Start Date 21/08/2017 End Date 21/08/2017

Scale **1:25** Sheet 1 of 1

SAMPL	ES		TESTS		es		STRATA			Donth		Install/
Depth	Type/ No.	Depth	Type/ No.	Results	Water Strikes		Description		Legend	Depth (Thickness)	Level	Backfill
-	140.	-	140.			TOPSOIL; Grass over bro	own slightly gravelly sandy clay with	rootlets.	alic	(0.20)		
- 0.50	В					Firm brown slightly gravell angular, fine to coarse qua [HEAD DEPOSITS]	y sandy CLAY. Sand is fine to coars artz.	se. Gravel is		0.20	65.02	
- 0.50 - 0.50 - - - - - - -	ES	-								(1.00)		
- 1.00 - 1.00 - - - -	B ES	-								1.20	64.02	= = = : = = = :
		-								-		
		- - - -								-		
		-										
-										- - -		
										-	_	
										-		
		- - - - - -								-	_	
		-										
										- - - -		
- - -		- - -										
PLAN DETAI	 LS	-					Remarks					$\vdash \vdash \vdash$
		0.7		Long Axis	Orientat		Hand dug pit. 2. Groundwater r contamination.	not encountered. 3. N	lo visual c	or olfactory e	vidence	of
0.7	Shoring / S				None							
	Stability: Stable Groundwater (desc					cription):				Term	ination 1.20r	

SAS

Project No. UA008926 Easting (OS mE) 609754.60

Ground Level (mAOD) **79.01**Northing (OS mN) **136560.71**

Start Date 21/08/2017 End Date 21/08/2017

Scale **1:25** Sheet 1 of 1

SAM	IPLES		TESTS		- Se		STRATA		D"	T	Install/	
Depth	T /	Depth	Type/ No.	Results	Water Strikes		Description		Legend	Depth (Thickness)	Level	Install/ Backfill
-	140.	-	140.			TOPSOIL; Grass over bro	own slightly gravelly sandy clay with roo	otlets.	alic	l		
E		-							116 16 16	(0.20) 0.20	78.81	
-		-				Firm brown slightly gravel angular, fine to coarse qua	ly sandy CLAY. Sand is fine to coarse. artz.	Gravel is		0.20	70.01	
-		-				angular, fine to coarse qua [HEAD DEPOSITS]						
- - 0.50 - 0.50	В	-									<u> </u>	
0.50	ES	-										
-		-								(1.00)		
ļ		- -										
1.00		-									•	
1.00	B ES	-										
-		-								1.20	77.81	
-		- -										
F		-									İ	
F											-	
-		-										
F		-									<u> </u>	
E											-	
L		_								_	_	
-		-										
-		-									 	
E		_									İ	
E		_										
-		-										
ļ.		- -										
F		-									İ	
E		_										
-		_								_	_	
F		-									•	
F		-									İ	
E		_										
-		-										
-		-									<u> </u>	
F		-										
E		_										
ļ.		-										
_		-								_	-	
F		-									İ	
E		_										
-		-										
‡		-									-	
F		-									†	
E											[
ţ		-									1	
ţ		-									<u> </u>	
F		<u> </u>								-	-	
PLAN DE	TAILS	F					Remarks					
		0.7		Long Axis	Orientat	ion:	1. Hand dug pit. 2. Groundwater no	t encountered. 3. N	lo visual d	or olfactory e	vidence	of
				¬ ¬			contamination.					
0.7				Shoring /		None						
				Stability:						Torre	nination	Denth:
				Groundw	ater (desc	cription):				lem		
+ -				_							1.20r	n

SAS

APPENDIX D

CERTIFICATION OF FIELD APPARATUS

SPT Hammer Energy Test Report

in accordance with BSEN ISO 22476-3:2005

ARCHWAY ENGINEERING AINLEYS INDUSTRIAL ESTATE ELLAND WEST YORKSHIRE

HX59JP

SPT Hammer Ref: AR1704

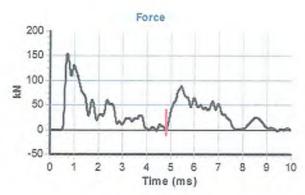
Test Date: 09/02/2017

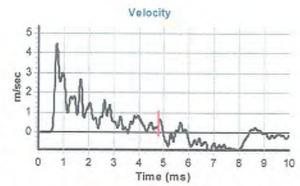
Report Date: 24/05/2017

File Name: AR1704.spt

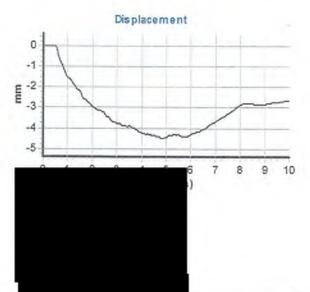
Test Operator: SH

Instrumented Rod Data


Diameter dr (mm): 54 Wall Thickness tr (mm): 6.1 Assumed Modulus Ea (GPa): 200 Accelerometer No.1: 7080 Accelerometer No.2: 7079


SPT Hammer Information

Hammer Mass m (kg): 63.5 Falling Height h (mm): 760 SPT String Length L (m): 10.0


Comments / Location

CALIBRATION

Calculations

Area of Rod A (mm2): 918 Theoretical Energy Etheor (J): 473 Measured Energy E_{meas} (J): 321

Signed: S. HOWARTH

Title: FITTER

Energy Ratio E r (%):

68

The recommended calibration interval is 12 months

APPENDIX E

IN SITU AND MONITORING DATA

Project:	Otterpool Park								
Job Number:	UA008926	Date:	31/08/2017						

Weather:	Dry
Engineer:	Roy Dennis

Monitoring Point Reference	Date/ Time	Atmos. Pressure (mbar)	Temp. (°C)	Well Pressure (mbar)	Flow Rate (I/h)	Time (sec)	CH4 (% v/v)	CO2 (% v/v)	O2 (% v/v)	CO (ppm)	H2S (ppm)	Depth to Water (m)	Depth to base (m)	Comments (all readings from GL, note datum height if different)
						0	0.0	0.0	21.4	0	0			
						10	0.1	2.2	19.6	0	0		5.4	
				<u>Peak:</u>	<u>Peak:</u>	20	0.1	2.3	18.9	0	0			
				0.0	0.0	30	0.1	2.3	18.8	0	0			
	43					40	0.1	2.4	18.6	0	0			
	11:43					50	0.1	2.5	18.5	0	0			
WS103	117	1007				60	0.1	2.6	18.4	0	0	_		
W3103	//20	1007				90	0.1	2.7	18.3	0	0	_	3.4	
	31/08/2017					120	0.1	2.8	18.1	0	0			
	31			Steady:	Steady:	150	0.1	2.9	18.1	0	0			
				0.0	0.0	180	0.1	2.9	18.1	0	0			
						210	0.1	3.0	17.9	0	0			
						240	0.1	3.3	17.6	0	0			
						270	0.1	3.5	17.4	0	0			

Ambient Co	ncentration					
CH4	0					
CO2	0					
02	21.4					
H2S	0					
СО	0					

Project:	Otterpool Park								
Job Number:	UA008926	Date:	31/08/2017						

Weather:	Dry
Engineer:	Roy Dennis

Monitoring Point Reference	Date/ Time	Atmos. Pressure (mbar)	Temp. (°C)	Well Pressure (mbar)	Flow Rate (I/h)	Time (sec)	CH4 (% v/v)	CO2 (% v/v)	O2 (% v/v)	CO (ppm)	H2S (ppm)	Depth to Water (m)	Depth to base (m)	Comments (all readings from GL, note datum height if different)
						0	0.0	0.0	21.4	0	0			
						10	0.1	1.5	19.6	0	0		5.4	
				<u>Peak:</u>	<u>Peak:</u>	20	0.1	1.5	19.5	0	0			
		1007 12:47		0.02	0.0	30	0.1	1.5	19.5	0	0			
	47					40	0.1	1.5	19.5	0	0			
	12:					50	0.1	1.5	19.5	0	0			
WS104	17					60	0.1	1.5	19.4	0	0			
W3104	,/20	1007				90	0.1	1.6	19.4	0	0	_		
	31/08/2017					120 0.1 1.6 19.4 0 0								
	31			Steady:	Steady:	150	0.1	1.6	19.4	0	0			
				0.00	0.0	180	0.1	1.6	19.3	0	0			
						210	0.1	1.7	19.3	0	0			
						240	0.1	1.7	19.2	0	0			
						270	0.1	1.8	19.1	0	0			

Ambient Co	Ambient Concentration										
CH4	0										
CO2	0										
02	21.4										
H2S	0										
СО	0										

Project:	Otterpool Park								
Job Number:	UA008926	Date:	31/08/2017						

Weather:	Dry
Engineer:	Roy Dennis

Monitoring Point Reference	Date/ Time	Atmos. Pressure (mbar)	Temp. (°C)	Well Pressure (mbar)	Flow Rate (I/h)	Time (sec)	CH4 (% v/v)	CO2 (% v/v)	O2 (% v/v)	CO (ppm)	H2S (ppm)	Depth to Water (m)	Depth to base (m)	Comments (all readings from GL, note datum height if different)		
						0	0.0	0.0	21.3	0	0					
						10	0.1	0.1	21.2	0	0					
				<u>Peak:</u>	Peak:	20	0.1	0.1	21.1	0	0					
		1007	0.00	0.0	30	0.1	0.2	21.0	0	0						
	17				-	40	0.1	0.2	21.0	0	0		2.65			
	12:17					50	0.1	0.2	21.0	0	0					
WS105	17					60	0.1	0.2	20.9	0	0	1.18				
W3103	31/08/2017	1007				90	0.1	0.2	20.9	0	0	1.10				
	80/					120	0.1	0.2	20.9	0	0					
	31			Steady:	Steady:	150	0.1	0.2	20.9	0	0					
				0.00	0.0	180	0.1	0.2	20.9	0	0					
						210	0.1	0.2	20.9	0	0					
								[240	0.1	0.2	20.9	0	0		
						270	0.1	0.2	20.9	0	0					

Ambient Concentration										
CH4 0										
CO2	0									
02	21.3									
H2S	0									
со	0									

Project:	Otterpool Park										
Job Number:	UA008926	Date:	31/08/2017								

Weather	Dry
Engineer	Roy Dennis

Monitoring Point Reference	Date/ Time	Atmos. Pressure (mbar)	Temp. (°C)	Well Pressure (mbar)	Flow Rate (I/h)	Time (sec)	CH4 (% v/v)	CO2 (% v/v)	O2 (% v/v)	CO (ppm)	H2S (ppm)	Depth to Water (m)	Depth to base (m)	Comments (all readings from GL, note datum height if different)				
						0	0.0	0.0	21.3	0	0							
						10	0.1	1.0	20.5	0	0							
				<u>Peak:</u>	<u>Peak:</u>	20	0.0	1.1	20.3	0	0							
				0.00	0.0	30	0.0	1.1	20.3	0	0							
	13:38					40	0.0	1.1	20.3	0	0							
								50	0.0	1.1	20.3	0	0					
WS106	17	1010			<u>Steady:</u>	60	0.0	1.1	20.3	0	0	2.31	3.33					
W3100	31/08/2017	1010				90	0.0	1.2	20.3	0	0	2.31						
	80/			<u>Steady:</u>		120	0.1	1.2	20.3	0	0							
	31					150	0.1	1.2	20.2	0	0							
								0.00	0.0	180	0.0	1.2	20.2	0	0			
						210	0.0	1.2	20.2	0	0							
					240	0.0	1.2	20.2	0	0								
						270	0.0	1.2	20.2	0	0							

Ambient Concentration										
CH4	0									
CO2	0									
02	21.3									
H2S	0									
СО	0									

Project:	Otterpool Park									
Job Number:	UA008926	Date:	31/08/2017							

Weather:	Dry
Engineer:	Roy Dennis

Monitoring Point Reference	Date/ Time	Atmos. Pressure (mbar)	Temp. (°C)	Well Pressure (mbar)	Flow Rate (I/h)	Time (sec)	CH4 (% v/v)	CO2 (% v/v)	O2 (% v/v)	CO (ppm)	H2S (ppm)	Depth to Water (m)	Depth to base (m)	Comments (all readings from GL, note datum height if different)					
						0	0.0	0.0	21.0	0	0								
						10	0.0	3.8	16.0	0	0								
				<u>Peak:</u>	<u>Peak:</u>	20	0.0	3.9	14.6	0	0								
					0.00	0.0	30	0.0	4.1	14.3	0	0							
	14:30		1010				40	0.0	4.3	14.1	0	0							
						50	0.0	4.5	13.8	0	0	2.14	2.95						
WS107		1010			<u>Steady:</u>	60	0.0	4.5	13.6	0	0								
VV3107	31/08/2017	1010				90	0.0	4.5	13.6	0	0	2.14							
	80/					120	0.0	4.6	13.5	0	0								
	31,			Steady:		150	0.0	4.6	13.5	0	0								
				0.00	0.0	180	0.0	4.6	13.5	0	0								
						210	0.0	4.6	13.5	0	0								
												240	0.0	4.6	13.4	0	0		
						270	0.0	4.6	13.1	0	0								

Ambient Concentration										
CH4	0									
CO2	0									
02	21.3									
H2S	0									
СО	0									

Project:	Otterpool Park									
Job Number:	UA008926	Date:	31/08/2017							

Weather:	Dry
Engineer:	Roy Dennis

Monitoring Point Reference	Date/ Time	Atmos. Pressure (mbar)	Temp. (°C)	Well Pressure (mbar)	Flow Rate (I/h)	Time (sec)	CH4 (% v/v)	CO2 (% v/v)	O2 (% v/v)	CO (ppm)	H2S (ppm)	Depth to Water (m)	Depth to base (m)	Comments (all readings from GL, note datum height if different)		
						0	0.0	0.0	21.5	0	0					
						10	0.0	1.8	20.2	0	0					
				<u>Peak:</u>	<u>Peak:</u>	20	0.0	1.9	19.9	0	0					
				0.00	0.0	30	0.0	2.1	19.8	0	0					
	44		1010			40	0.0	2.1	19.7	0	0					
	15:44						50	0.0	2.2	19.7	0	0				
WS108		1010				60	0.0	2.2	19.7	0	0	2.42	2.75			
W3100	/20	1010				90	0.0	2.2	19.7	0	0	2.42				
	31/08/2017					120	0.0	2.2	19.7	0	0					
	31,			Steady:	Steady:	150	0.0	2.2	19.7	0	0					
						0.00	0.0	180	0.0	2.2	19.6	0	0			
						210	0.0	2.2	19.6	0	0					
						240	0.0	2.2	19.6	0	0					
						270	0.0	2.2	19.6	0	0					

Ambient Concentration									
CH4 0									
CO2	0								
02	21.5								
H2S	0								
СО	0								

Project:	Otterpool Park									
Job Number:	UA008926	Date:	31/08/2017							

Weather:	Dry
Engineer:	Roy Dennis

Monitoring Point Reference	Date/ Time	Atmos. Pressure (mbar)	Temp. (°C)	Well Pressure (mbar)	Flow Rate (I/h)	Time (sec)	CH4 (% v/v)	CO2 (% v/v)	O2 (% v/v)	CO (ppm)	H2S (ppm)	Depth to Water (m)	Depth to base (m)	Comments (all readings from GL, note datum height if different)
						0	0.0	0.0	20.6	0	0			
						10	0.0	0.2	20.5	0	0			
				<u>Peak:</u>	<u>Peak:</u>	20	0.0	0.9	19.8	0	0		3.31	
				0.01	0.3	30	0.0	1.0	19.7	0	0			
	25					40	0.0	1.0	19.6	0	0	_		
	10:25					50	0.0	1.0	19.5	0	0			
WS112	117	1007			Steady: 0.0	60	0.0	1.0	19.5	0	0			
VV3112	//20	1007				90	0.0	1.1	19.5	0	0	_		
	31/08/2017					120	0.0	1.1	19.4	0	0			
	31			Steady:		150	0.0	1.1	19.3	0	0			
				0.00		180	0.1	1.2	19.3	0	0			
						210	0.1	1.2	19.2	0	0			
						240	0.1	1.3	19.0	0	0			
						270	0.1	1.4	18.9	0	0			

Ambient Co	Ambient Concentration										
CH4 0											
CO2	0 20.6										
02											
H2S	0										
СО	0										

Project:	Otterpool Park									
Job Number:	UA008926	Date:	31/08/2017							

Weather:	Dry
Engineer:	Roy Dennis

Monitoring Point Reference	Date/ Time	Atmos. Pressure (mbar)	Temp. (°C)	Well Pressure (mbar)	Flow Rate (I/h)	Time (sec)	CH4 (% v/v)	CO2 (% v/v)	O2 (% v/v)	CO (ppm)	H2S (ppm)	Depth to Water (m)	Depth to base (m)	Comments (all readings from GL, note datum height if different)
						0	0.0	0.0	20.2	0	0			
						10	0.0	0.0	20.0	0	0			
				<u>Peak:</u>	<u>Peak:</u>	20	0.0	0.0	20.1	0	0		9.92	
				0.01	0.01	30	0.0	0.0	20.2	0	0			
	35					40	0.0	0.0	20.1	0	0			
	10:35					50	0.0	0.0	20.1	0	0			
BH101	17	1007			<u>Steady:</u>	60	0.0	0.0	20.1	0	0			
BITTOT	//20	1007				90	0.0	0.0	20.1	0	0	-		
	31/08/2017					120	0.0	0.0	20.1	0	0			
	31	31,		Steady:		150	0.0	0.0	20.2	0	0			
				0.0	0.0	180	0.0	0.0	20.2	0	0			
					_	210	0.0	0.0	20.2	0	0			
						240	0.0	0.0	20.2	0	0			
						270	0.0	0.0	20.2	0	0			

Ambient Concentration									
CH4	0								
CO2	0								
02	20								
H2S	0								
СО	0								

Project:	Otterpool Park									
Job Number:	UA008926	Date:	31/08/2017							

Weather:	Dry
Engineer:	Roy Dennis

Monitoring Point Reference	Date/ Time	Atmos. Pressure (mbar)	Temp. (°C)	Well Pressure (mbar)	Flow Rate (I/h)	Time (sec)	CH4 (% v/v)	CO2 (% v/v)	O2 (% v/v)	CO (ppm)	H2S (ppm)	Depth to Water (m)	Depth to base (m)	Comments (all readings from GL, note datum height if different)
						0	0.0	0.0	21.4	0	0			
						10	0.0	2.5	19.1	0	0			
				<u>Peak:</u>	<u>Peak:</u>	20	0.0	2.5	19.1	0	0		9.56	
				0.01	0.01	30	0.0	2.5	19.1	0	0			
	18	1010				40	0.0	2.5	19.1	0	0			
	13:18					50	0.0	2.5	19.1	0	0			
BH102	17					60	0.0	2.5	19.1	0	0			
611102	/20	1010				90	0.0	2.5	19.1	0	0	_		
	31/08/2017					120	0.0	2.5	19.1	0	0			
	31			Steady:	Steady:	150	0.0	2.5	19.1	0	0			
				0.0	0.0	180	0.0	2.5	19.1	0	0			
						210	0.0	2.5	19.1	0	0			
						240	0.0	2.5	19.1	0	0			
						270	0.0	2.5	19.1	0	0			

Ambient Concentration										
CH4	0									
CO2	0									
02	21.4									
H2S	0									
СО	0									

Project:	Otterpool Park									
Job Number:	UA008926	Date:	31/08/2017							

Weather:	Dry
Engineer:	Roy Dennis

Monitoring Point Reference	Date/ Time	Atmos. Pressure (mbar)	Temp. (°C)	Well Pressure (mbar)	Flow Rate (I/h)	Time (sec)	CH4 (% v/v)	CO2 (% v/v)	O2 (% v/v)	CO (ppm)	H2S (ppm)	Depth to Water (m)	Depth to base (m)	Comments (all readings from GL, note datum height if different)		
						0	0.0	0.0	20.8	0	0					
						10	0.1	0.1	20.9	0	0					
				<u>Peak:</u>	<u>Peak:</u>	20	0.1	0.2	20.5	0	0		8.28			
				0.01	0.01	30	0.1	0.2	20.4	0	0					
	38		0		-	40	0.0	0.2	20.4	0	0	1.87				
	14:38					50	0.0	0.2	20.3	0	0					
BH103		1010				60	0.0	0.2	20.3	0	0					
BU102	/20	1010				90	0.0	0.2	20.2	0	0	1.07				
	31/08/2017							120	0.0	0.2	20.2	0	0			
	31,			Steady:	Steady: 0.0	150	0.0	0.2	20.1	0	0					
				0.0		180	0.0	0.2	20.1	0	0	-				
						210	0.0	0.2	20.0	0	0					
						240	0.0	0.2	20.0	0	0					
						270	0.0	0.2	20.0	0	0					

Ambient Concentration									
CH4	0								
CO2	0								
02	20.8								
H2S	0								
СО	0								

Project:	Otterpool Park									
Job Number:	UA008926	Date:	31/08/2017							

Weather:	Dry
Engineer:	Roy Dennis

Monitoring Point Reference	Date/ Time	Atmos. Pressure (mbar)	Temp. (°C)	Well Pressure (mbar)	Flow Rate (I/h)	Time (sec)	CH4 (% v/v)	CO2 (% v/v)	O2 (% v/v)	CO (ppm)	H2S (ppm)	Depth to Water (m)	Depth to base (m)	Comments (all readings from GL, note datum height if different)		
						0	0.0	0.0	20.2	0	0					
						10	0.0	0.4	19.8	2	0					
				<u>Peak:</u>	<u>Peak:</u>	20	0.0	0.4	19.7	2	0					
	11:00					0.0	0.0	30	0.0	0.4	19.4	2	0			
							40	0.0	0.4	19.3	3	0				
						50	0.0	0.4	19.2	2	0	3.81	7.88			
BH104	17	1010				60	0.0	0.4	19.1	3	0					
611104	7,50	1010				90	0.0	0.4	19.1	3	0	3.61				
	31/08/2017					120	0.0	0.5	19.1	2	0					
	31			Steady:	Steady:	150	0.0	0.5	19.1	2	0					
				0.0	0.0	180	0.0	0.5	19.0	3	0					
						210	0.0	0.5	19.0	2	0					
						240	0.0	0.5	19.0	3	0					
						270	0.0	0.5	19.0	3	0					

Ambient Concentration									
CH4	0								
CO2	0								
02	20.2								
H2S	0								
СО	0								

Project:	Otterpool Park									
Job Number:	UA008926	Date:	31/08/2017							

Weather:	Dry
Engineer:	Roy Dennis

Monitoring Point Reference	Date/ Time	Atmos. Pressure (mbar)	Temp. (°C)	Well Pressure (mbar)	Flow Rate (I/h)	Time (sec)	CH4 (% v/v)	CO2 (% v/v)	O2 (% v/v)	CO (ppm)	H2S (ppm)	Depth to Water (m)	Depth to base (m)	Comments (all readings from GL, note datum height if different)								
						0	0.0	0.1	21.5	0	0											
						10	0.0	0.3	18.8	0	0											
				<u>Peak:</u>	<u>Peak:</u>	20	0.0	1.2	14.4	3	0											
						0.4	0.6	30	0.0	1.3	13.2	4	0									
	15:17		1009			40	0.0	1.4	12.5	5	0											
							50	0.0	1.4	12.0	6	0										
BH105						60	0.0	1.5	11.6	7	0	3.69	7.27									
витоз	31/08/2017					90	0.0	1.5	11.1	7	0	3.09										
	/08													120	0.0	1.6	10.4	8	0			
	31			Steady:	Steady:	150	0.0	1.7	9.6	9	0											
				0.4	0.6	180	0.0	1.9	8.0	10	0											
										210	0.0	2.3	5.3	13	0							
						240	0.0	2.4	3.9	14	0											
						270	0.0	2.5	3.4	15	0											

Ambient Concentration									
CH4	0								
CO2	0								
02	20.2								
H2S	0								
СО	0								

Project:	Otterpool Park									
Job Number:	UA008926	Date:	08/09/2017							

Weather:	Dry
Engineer:	Roy Dennis

Monitoring Point Reference	Date/ Time	Atmos. Pressure (mbar)	Temp. (°C)	Well Pressure (mbar)	Flow Rate (I/h)	Time (sec)	CH4 (% v/v)	CO2 (% v/v)	O2 (% v/v)	CO (ppm)	H2S (ppm)	Depth to Water (m)	Depth to base (m)	Comments (all readings from GL, note datum height if different)			
						0	0.0	0.0	21.1	0	0						
						10	0.0	0.6	20.0	0	0						
				<u>Peak:</u>	Peak:	20	0.0	4.2	17.1	0	0						
				0.0	0.0	30	0.0	4.3	16.4	0	0						
	11:40					40	0.0	4.4	16.2	0	0						
							50	0.0	4.4	16.1	0	0					
WS103	17	992			<u>Steady:</u>	60	0.0	4.4	16.1	0	0		4.96				
W3103	08/09/2017	332				90	0.0	4.4	16.1	0	0	_					
	60/					120	0.0	4.4	16.1	0	0						
	80			Steady:		150	0.0	4.4	16.1	0	0						
							0.0	0.0	180	0.0	4.4	16.1	0	0			
						210	0.0	4.4	16.1	0	0						
						240	0.0	4.4	16.1	0	0						
						270	0.0	4.4	16.1	0	0						

Ambient Concentration										
CH4	0									
CO2	0									
02	21.1									
H2S	0									
СО	0									

Project:	Otterpool Park									
Job Number:	UA008926	Date:	08/09/2017							

Weather:	Dry
Engineer:	Roy Dennis

Monitoring Point Reference	Date/ Time	Atmos. Pressure (mbar)	Temp. (°C)	Well Pressure (mbar)	Flow Rate (I/h)	Time (sec)	CH4 (% v/v)	CO2 (% v/v)	O2 (% v/v)	CO (ppm)	H2S (ppm)	Depth to Water (m)	Depth to base (m)	Comments (all readings from GL, note datum height if different)					
						0	0.0	0.0	20.8	0	0								
						10	0.0	1.9	18.2	0	0								
				<u>Peak:</u>	<u>Peak:</u>	20	0.0	2.8	16.8	0	0								
				0.02	0.0	30	0.0	2.9	16.4	0	0								
	20		003			40	0.0	2.9	16.3	0	0								
	12:50						50	0.0	2.9	16.3	0	0							
WS104	17	992				60	0.0	2.9	16.3	0	0		3.77						
W3104	08/09/2017	332				90	0.0	2.9	16.3	0	0	_							
	60/							120	0.0	2.9	16.3	0	0						
	80							<u>Steady</u> 0.00	Steady:	Steady:	150	0.0	2.9	16.3	0	0			
									0.00	0.0	180	0.0	2.9	16.3	0	0			
						210	0.0	2.9	16.3	0	0								
						240	0.0	2.9	16.3	0	0								
						270	0.0	2.9	16.3	0	0								

Ambient Concentration									
CH4	0								
CO2	0								
02	20.8								
H2S	0								
СО	0								

Project:	Otterpool Park									
Job Number:	UA008926	Date:	08/09/2017							

Weather:	Dry
Engineer:	Roy Dennis

Monitoring Point Reference	Date/ Time	Atmos. Pressure (mbar)	Temp. (°C)	Well Pressure (mbar)	Flow Rate (I/h)	Time (sec)	CH4 (% v/v)	CO2 (% v/v)	O2 (% v/v)	CO (ppm)	H2S (ppm)	Depth to Water (m)	Depth to base (m)	Comments (all readings from GL, note datum height if different)					
						0	0.0	0.0	20.8	0	0								
						10	0.0	0.1	20.8	0	0								
				<u>Peak:</u>	<u>Peak:</u>	20	0.0	0.2	20.4	0	0								
				0.00	0.0	30	0.0	0.2	20.3	0	0								
	32					40	0.0	0.2	20.3	0	0								
	12:32						50	0.0	0.2	20.3	0	0							
WS105	17	994				60	0.0	0.2	20.3	0	0	0.942	2.65						
W3103	08/09/2017	334				90	0.0	0.2	20.3	0	0	0.542							
	60/							120	0.0	0.2	20.3	0	0						
	08			Steady:	Steady:	150	0.0	0.2	20.3	0	0								
									0.00	0.0	180	0.0	0.2	20.3	0	0			
						210	0.0	0.2	20.3	0	0								
									240	0.0	0.2	20.3	0	0					
						270	0.0	0.2	20.3	0	0								

Ambient Concentration									
CH4 0									
CO2	0								
02	20.8								
H2S	0								
СО	0								

Project:	Otterpool Park									
Job Number:	UA008926	Date:	08/09/2017							

Weather:	Dry
Engineer:	Roy Dennis

Monitoring Point Reference	Date/ Time	Atmos. Pressure (mbar)	Temp. (°C)	Well Pressure (mbar)	Flow Rate (I/h)	Time (sec)	CH4 (% v/v)	CO2 (% v/v)	O2 (% v/v)	CO (ppm)	H2S (ppm)	Depth to Water (m)	Depth to base (m)	Comments (all readings from GL, note datum height if different)						
						0	0.0	0.0	21.0	0	0									
						10	0.1	0.6	20.6	0	0									
				<u>Peak:</u>	<u>Peak:</u>	20	0.0	0.7	20.4	0	0									
				0.00	0.0	30	0.0	0.9	20.3	0	0									
	13:50					40	0.0	1.0	20.3	0	0									
	13:						50	0.0	1.1	20.2	0	0								
WS106	17	992				60	0.0	1.1	20.1	0	0	1.99	2.99							
W3100	08/09/2017	332				90	0.0	1.2	20.0	0	0	1.55								
	60/								İ			120	0.0	1.2	20.0	0	0			
	08			<u>Steady:</u> 0.00	Steady:	150	0.0	1.3	19.9	0	0									
					0.0	180	0.0	1.3	19.9	0	0									
						210	0.0	1.4	19.9	0	0									
								240	0.0	1.4	19.8	0	0							
						270	0.0	1.4	19.8	0	0									

Ambient Concentration									
CH4	0								
CO2	0								
02	21.0								
H2S	0								
СО	0								

Project:	Otterpool Park									
Job Number:	UA008926	Date:	08/09/2017							

Weather:	Dry
Engineer:	Roy Dennis

Monitoring Point Reference	Date/ Time	Atmos. Pressure (mbar)	Temp. (°C)	Well Pressure (mbar)	Flow Rate (I/h)	Time (sec)	CH4 (% v/v)	CO2 (% v/v)	O2 (% v/v)	CO (ppm)	H2S (ppm)	Depth to Water (m)	Depth to base (m)	Comments (all readings from GL, note datum height if different)
						0	0.0	0.0	20.6	0	0			
						10	0.0	0.2	20.5	0	0			
				<u>Peak:</u>	<u>Peak:</u>	20	0.0	0.9	19.7	0	0		3.03	
				0.00	0.0	30	0.0	1.1	18.9	0	0			
	14:30					40	0.0	1.4	18.5	0	0	2.28		
						50	0.0	1.7	17.6	0	0			
WS107	17	992				60	0.0	2.0	16.4	0	0			
VV3107	08/09/2017	992				90	0.0	2.3	16.1	0	0			
	60/					120	0.0	2.4	15.9	0	0			
	08			Steady:	Steady:	150	0.0	2.7	15.1	0	0			
				0.00	0.0	180	0.0	2.9	15.5	0	0			
						210	0.0	3.1	15.4	0	0			
						240	0.0	3.4	15.4	0	0			
						270	0.0	3.5	15.4	0	0			

Ambient Concentration									
CH4	0								
CO2	0								
02	20.6								
H2S	0								
СО	0								

Project:	Otterpool Park									
Job Number:	UA008926	Date:	08/09/2017							

Weather:	Dry
Engineer:	Roy Dennis

Monitoring Point Reference	Date/ Time	Atmos. Pressure (mbar)	Temp. (°C)	Well Pressure (mbar)	Flow Rate (I/h)	Time (sec)	CH4 (% v/v)	CO2 (% v/v)	O2 (% v/v)	CO (ppm)	H2S (ppm)	Depth to Water (m)	Depth to base (m)	Comments (all readings from GL, note datum height if different)					
						0	0.0	0.0	20.7	0	0								
						10	0.0	0.1	20.7	0	0								
				<u>Peak:</u>	<u>Peak:</u>	20	0.0	0.1	20.7	0	0		2.72						
				0.01	0.0	30	0.0	0.1	20.7	0	0								
	16:00					40	0.0	0.1	20.7	0	0	2.672							
						50	0.0	0.1	20.7	0	0								
WS108	117	995				60	0.0	0.1	20.7	0	0								
W3108	/20	993				90	0.0	0.1	20.7	0	0	2.072							
	08/09/2017					120	0.0	0.2	20.7	0	0								
	08			Steady:	Steady:	150	0.0	0.2	20.7	0	0								
				0.01	0.0	180	0.0	0.3	20.7	0	0								
						210	0.0	0.3	20.7	0	0								
												240	0.0	0.4	20.6	0	0		
						270	0.0	0.4	20.5	0	0								

Ambient Concentration						
CH4	0					
CO2	0					
02	20.7					
H2S	0					
СО	0					

Project:	Otterpool Park							
Job Number:	UA008926	Date:	08/09/2017					

Weather:	Dry
Engineer:	Roy Dennis

Monitoring Point Reference	Date/ Time	Atmos. Pressure (mbar)	Temp. (°C)	Well Pressure (mbar)	Flow Rate (I/h)	Time (sec)	CH4 (% v/v)	CO2 (% v/v)	O2 (% v/v)	CO (ppm)	H2S (ppm)	Depth to Water (m)	Depth to base (m)	Comments (all readings from GL, note datum height if different)													
						0	0.0	0.0	20.5	0	0																
						10	0.0	0.0	20.4	0	0																
				Peak:	Peak:	20	0.0	0.0	20.4	0	0																
							0.01	0.3	30	0.0	0.0	20.4	0	0													
	17 10:12			•	40	0.0	0.0	20.4	0	0																	
			001			50	0.0	0.0	20.4	0	0	_	3.41														
WS112		991				60	0.0	0.0	20.4	0	0																
VV3112	/20		991	991				90	0.0	0.0	20.4	0	0	-	3.41												
	60/																		120	0.0	0.0	20.4	0	0			
	088					Steady:	Steady:	150	0.0	0.0	20.4	0	0														
					0.00	0.0	180	0.0	0.0	20.4	0	0															
					210	0.0	0.0	20.4	0	0																	
								240	0.0	0.0	20.4	0	0														
						270	0.0	0.0	20.4	0	0																

Ambient Concentration						
CH4	0					
CO2	0					
02	20.5					
H2S	0					
СО	0					

Project:	Otterpool Park							
Job Number:	UA008926	Date:	08/09/2017					

Weather:	Dry
Engineer:	Roy Dennis

Monitoring Point Reference	Date/ Time	Atmos. Pressure (mbar)	Temp. (°C)	Well Pressure (mbar)	Flow Rate (I/h)	Time (sec)	CH4 (% v/v)	CO2 (% v/v)	O2 (% v/v)	CO (ppm)	H2S (ppm)	Depth to Water (m)	Depth to base (m)	Comments (all readings from GL, note datum height if different)										
						0	0.0	0.0	20.5	0	0													
						10	0.0	1.0	20.0	0	0													
				<u>Peak:</u>	<u>Peak:</u>	20	0.0	1.3	19.3	0	0													
							0.00	0.0	30	0.0	1.4	19.3	0	0										
	17 10:00				40	0.0	1.4	19.3	0	0														
						50	0.0	1.4	19.3	0	0	9.885	9.92											
BH101		989				60	0.0	1.4	19.3	0	0													
BIIIOI	/20		909	363	363				90	0.0	1.4	19.3	0	0	3.003	9.92								
	BH101 989 08/09/2011								ļ									120	0.0	1.4	19.3	0	0	
					Steady:	Steady:	150	0.0	1.4	19.3	0	0												
						0.00	0.0	180	0.0	1.4	19.3	0	0											
						210	0.0	1.4	19.3	0	0													
											240	0.0	1.4	19.3	0	0								
						270	0.0	1.4	19.3	0	0													

Ambient Concentration							
CH4	0						
CO2	0						
02	20.5						
H2S	0						
СО	0						

Project:	Otterpool Park								
Job Number:	UA008926	Date:	08/09/2017						

Weather:	Dry
Engineer:	Roy Dennis

Monitoring Point Reference	Date/ Time	Atmos. Pressure (mbar)	Temp. (°C)	Well Pressure (mbar)	Flow Rate (I/h)	Time (sec)	CH4 (% v/v)	CO2 (% v/v)	O2 (% v/v)	CO (ppm)	H2S (ppm)	Depth to Water (m)	Depth to base (m)	Comments (all readings from GL, note datum height if different)						
						0	0.0	0.0	20.6	0	0									
						10	0.0	1.7	19.6	0	0									
				<u>Peak:</u>	<u>Peak:</u>	20	0.0	2.1	19.1	0	0									
				0.00	0.0	30	0.0	2.2	18.9	0	0									
	32	10:32							40	0.0	2.3	18.7	0	0						
	10:							50	0.0	2.5	18.6	0	0							
BH102	17	989				60	0.0	2.5	18.6	0	0		9.56							
611102	/20	363				90	0.0	2.6	18.5	0	0	_	3.30							
	08/09/2017					120	0.0	2.7	18.5	0	0									
	08			Steady:	Steady:	150	0.0	2.7	18.4	0	0									
										0.00	0.0	180	0.0	2.7	18.4	0	0			
									210	0.0	2.7	18.4	0	0						
						240	0.0	2.7	18.4	0	0									
						270	0.0	2.7	18.4	0	0									

Ambient Concentration								
CH4 0								
CO2	0							
02	20.6							
H2S	0							
со	0							

Project:	Otterpool Park									
Job Number:	UA008926	Date:	08/09/2017							

Weather:	Dry
Engineer:	Roy Dennis

Monitoring Point Reference	Date/ Time	Atmos. Pressure (mbar)	Temp. (°C)	Well Pressure (mbar)	Flow Rate (I/h)	Time (sec)	CH4 (% v/v)	CO2 (% v/v)	O2 (% v/v)	CO (ppm)	H2S (ppm)	Depth to Water (m)	Depth to base (m)	Comments (all readings from GL, note datum height if different)	
						0	0.0	0.0	20.5	0	0				
						10	0.0	0.1	20.5	0	0				
				<u>Peak:</u>	<u>Peak:</u>	20	0.0	0.2	19.6	0	0				
		14:38		0.00	0.0	30	0.0	0.2	18.8	0	0				
	38						40	0.0	0.2	18.6	0	0			
	14:						50	0.0	0.2	18.6	0	0			
BH103		992			<u>Steady:</u>	60	0.0	0.2	18.4	0	0	1.84	8.24		
ритоз	/20	992				90	0.0	0.2	18.4	0	0	1.04			
	08/09/2017					120	0.0	0.2	18.4	0	0				
	08			Steady:		150	0.0	0.2	18.2	0	0				
			0.00	0.0	180	0.0	0.2	18.1	0	0					
						210	0.0	0.2	17.8	0	0				
						240	0.0	0.2	16.8	0	0				
						270	0.0	0.3	16.7	0	0				

Ambient Concentration								
CH4	0							
CO2	0							
02	20.5							
H2S	0							
СО	0							

Project:	Otterpool Park									
Job Number:	UA008926	Date:	08/09/2017							

Weather:	Dry
Engineer:	Roy Dennis

Monitoring Point Reference	Date/ Time	Atmos. Pressure (mbar)	Temp. (°C)	Well Pressure (mbar)	Flow Rate (I/h)	Time (sec)	CH4 (% v/v)	CO2 (% v/v)	O2 (% v/v)	CO (ppm)	H2S (ppm)	Depth to Water (m)	Depth to base (m)	Comments (all readings from GL, note datum height if different)		
						0	0.0	0.0	20.9	0	0					
						10	0.0	1.5	19.6	0	0					
				<u>Peak:</u>	<u>Peak:</u>	20	0.0	1.5	18.7	0	0					
				0.00	0.0	30	0.0	1.5	18.5	0	0					
	00	11:00					40	0.0	1.5	18.5	0	0				
	11:									50	0.0	1.5	18.5	0	0	
BH104		991				60	0.0	1.5	18.5	0	0	3.47	7.2			
БП104	/20	991				90	0.0	1.5	18.5	0	0	3.47	7.2			
	08/09/2017					120	0.0	1.5	18.5	0	0					
	08%			Steady:	Steady:	150	0.0	1.5	18.5	0	0					
				0.00	0.0	180	0.0	1.5	18.5	0	0					
						210	0.0	1.5	18.5	0	0					
						240	0.0	1.5	18.5	0	0					
						270	0.0	1.5	18.5	0	0					

Ambient Concentration								
CH4	0							
CO2	0							
02	20.9							
H2S	0							
СО	0							

Project:	Otterpool Park								
Job Number:	UA008926	Date:	08/09/2017						

Weather:	Dry
Engineer:	Roy Dennis

Monitoring Point Reference	Date/ Time	Atmos. Pressure (mbar)	Temp. (°C)	Well Pressure (mbar)	Flow Rate (I/h)	Time (sec)	CH4 (% v/v)	CO2 (% v/v)	O2 (% v/v)	CO (ppm)	H2S (ppm)	Depth to Water (m)	Depth to base (m)	Comments (all readings from GL, note datum height if different)		
						0	0.0	0.0	20.8	0	0					
						10	0.0	1.9	19.2	0	0					
				<u>Peak:</u>	<u>Peak:</u>	20	0.0	2.6	18.5	0	0					
	15:00					-0.02	0.0	30	0.0	2.6	18.4	0	0			
			992				40	0.0	2.6	18.4	0	0				
							50	0.0	2.7	18.3	0	0				
BH105	117	002				60	0.0	2.7	18.3	0	0	3.655	7.32			
611103	/20	992				90	0.0	2.7	18.3	0	0	3.033				
	08/09/2017				<u>Steady:</u>	120	0.0	2.7	18.3	0	0					
	08			Steady:		150	0.0	2.7	18.3	0	0					
				-0.02	0.0	180	0.0	2.7	18.3	0	0					
							210	0.0	2.7	18.3	0	0				
						240	0.0	2.7	18.3	0	0					
						270	0.0	2.7	18.3	0	0					

Ambient Concentration								
CH4 0								
CO2	0							
02	20.8							
H2S	0							
со	0							

Project:	Otterpool Park								
Job Number:	UA008926	Date:	08/09/2017						

Weather:	Dry
Engineer:	Roy Dennis

Monitoring Point Reference	Date/ Time	Atmos. Pressure (mbar)	Temp. (°C)	Well Pressure (mbar)	Flow Rate (I/h)	Time (sec)	CH4 (% v/v)	CO2 (% v/v)	O2 (% v/v)	CO (ppm)	H2S (ppm)	Depth to Water (m)	Depth to base (m)	Comments (all readings from GL, note datum height if different)								
						0	0.0	0.0	20.9	0	0											
						10	0.0	2.6	19.8	0	0											
				<u>Peak:</u>	<u>Peak:</u>	20	0.0	3.2	18.9	0	0											
				0.00	0.0	30	0.0	3.4	18.5	0	0											
	10:30	991												40	0.0	3.5	18.6	0	0			
									50	0.0	3.7	18.2	0	0								
BH1	17					60	0.0	3.9	18.1	0	0	9.4	12.36									
рит	08/09/2017	991				90	0.0	3.9	18.0	0	0	9.4	12.50									
	60/				i							120	0.0	3.9	18.0	0	0					
	80			,	 					Steady:	Steady:	150	0.0	4.0	17.9	0	0					
											0.00	0.0	180	0.0	4.0	17.9	0	0				
										210	0.0	4.0	17.9	0	0							
						240	0.0	4.0	17.9	0	0											
						270	0.0	4.0	17.9	0	0											

Ambient Concentration								
CH4	0							
CO2	0							
02	20.9							
H2S	0							
СО	0							

Project:	Otterpool Park								
Job Number:	UA008926	Date:	08/09/2017						

Weather:	Dry
Engineer:	Roy Dennis

Monitoring Point Reference	Date/ Time	Atmos. Pressure (mbar)	Temp. (°C)	Well Pressure (mbar)	Flow Rate (I/h)	Time (sec)	CH4 (% v/v)	CO2 (% v/v)	O2 (% v/v)	CO (ppm)	H2S (ppm)	Depth to Water (m)	Depth to base (m)	Comments (all readings from GL, note datum height if different)								
						0	0.0	0.0	20.9	0	0											
						10	0.0	0.0	20.9	0	0											
				<u>Peak:</u>	<u>Peak:</u>	20	0.0	2.2	19.5	0	0											
				0.01	0.0	30	0.0	3.5	17.7	0	0											
	10:45						40	0.0	3.5	17.4	0	0		10.56								
							50	0.0	3.5	17.3	0	0			'							
BH2	17	991	001				60	0.0	3.5	17.3	0	0	7.07									
BHZ	/20	991				90	0.0	3.5	17.3	0	0	7.07	10.50									
	08/09/2017											120	0.0	3.5	17.2	0	0					
	08			Steady:	Steady:	150	0.0	3.5	17.2	0	0											
												0.01	0.0	180	0.0	3.5	17.2	0	0			
						210	0.0	3.5	17.2	0	0											
						240	0.0	3.5	17.2	0	0											
						270	0.0	3.5	17.1	0	0											

Ambient Concentration							
CH4	0						
CO2	0						
02	20.9						
H2S	0						
СО	0						

Project:	Otterpool Park								
Job Number:	UA008926	Date:	08/09/2017						

Weather:	Dry
Engineer:	Roy Dennis

Monitoring Point Reference	Date/ Time	Atmos. Pressure (mbar)	Temp. (°C)	Well Pressure (mbar)	Flow Rate (I/h)	Time (sec)	CH4 (% v/v)	CO2 (% v/v)	O2 (% v/v)	CO (ppm)	H2S (ppm)	Depth to Water (m)	Depth to base (m)	Comments (all readings from GL, note datum height if different)								
						0	0.0	0.0	20.6	0	0											
						10	0.0	0.4	19.2	0	0											
				<u>Peak:</u>	<u>Peak:</u>	20	0.0	1.7	16.6	0	0											
		990										0.00	0.0	30	0.0	1.7	16.1	0	0			
	00														40	0.0	1.7	16.1	0	0		
	11:00										50	0.0	1.7	16.1	0	0						
вн3	117						60	0.0	1.7	16.1	0	0	=	12.87								
ыз	/20			990	330	330	330				90	0.0	1.7	16.1	0	0	_	12.07				
	60/						,		•	120	0.0	1.7	16.1	0	0							
	088			Steady:	Steady:	150	0.0	1.7	16.1	0	0											
										0.00	0.0	180	0.0	1.7	16.1	0	0					
									210	0.0	1.7	16.1	0	0								
						240	0.0	1.7	16.1	0	0											
						270	0.0	1.7	16.1	0	0											

Ambient Concentration						
CH4	0					
CO2	0					
02	20.6					
H2S	0					
СО	0					

Project:	Otterpool Park								
Job Number:	UA008926	Date:	08/09/2017						

Weather:	Dry
Engineer:	Roy Dennis

Monitoring Point Reference	Date/ Time	Atmos. Pressure (mbar)	Temp. (°C)	Well Pressure (mbar)	Flow Rate (I/h)	Time (sec)	CH4 (% v/v)	CO2 (% v/v)	O2 (% v/v)	CO (ppm)	H2S (ppm)	Depth to Water (m)	Depth to base (m)	Comments (all readings from GL, note datum height if different)		
						0	0.0	0.0	20.7	0	0					
						10	0.0	2.3	17.2	0	0					
				<u>Peak:</u>	<u>Peak:</u>	20	0.0	2.7	15.3	0	0					
						0.00	0.0	30	0.0	2.9	14.9	0	0			
	11:15				40	0.0	3.1	14.4	0	0						
							50	0.0	3.2	14.2	0	0				
BH4	17	993				60	0.0	3.2	14.1	0	0	10.205	10.845			
6114	/20	993				90	0.0	3.3	14.0	0	0	10.203				
	08/09/2017					120	0.0	3.3	14.0	0	0					
	08			Steady:	Steady:	150	0.0	3.3	13.9	0	0					
				0.00	0.0	180	0.0	3.3	13.8	0	0					
						210	0.0	3.4	13.8	0	0					
						240	0.0	3.4	13.8	0	0					
						270	0.0	3.4	13.7	0	0					

Ambient Co	Ambient Concentration						
CH4	0						
CO2	0						
02	20.7						
H2S	0						
со	0						

Project:	Otterpool Park								
Job Number:	UA008926	Date:	08/09/2017						

Weather:	Dry
Engineer:	Roy Dennis

Monitoring Point Reference	Date/ Time	Atmos. Pressure (mbar)	Temp. (°C)	Well Pressure (mbar)	Flow Rate (I/h)	Time (sec)	CH4 (% v/v)	CO2 (% v/v)	O2 (% v/v)	CO (ppm)	H2S (ppm)	Depth to Water (m)	Depth to base (m)	Comments (all readings from GL, note datum height if different)		
						0	0.0	0.0	20.8	0	0					
						10	0.0	0.6	19.5	0	0					
				<u>Peak:</u>	<u>Peak:</u>	20	0.0	4.1	16.6	0	0					
		991			0.00	0.0	30	0.0	4.4	15.9	0	0				
	30							40	0.0	4.4	15.8	0	0			
	11:								50	0.0	4.4	15.7	0	0		
BH5						60	0.0	4.4	15.7	0	0	9.73	12.44			
спа	/20	991				90	0.0	4.4	15.7	0	0	9.75				
	08/09/2017							120	0.0	4.4	15.7	0	0			
	08			Steady:	Steady:	150	0.0	4.4	15.7	0	0					
				0.00	0.0	180	0.0	4.4	15.7	0	0					
						210	0.0	4.4	15.7	0	0					
						240	0.0	4.4	15.7	0	0					
						270	0.0	4.4	13.7	0	0					

Ambient Co	Ambient Concentration							
CH4	0							
CO2	0							
02	20.8							
H2S	0							
СО	0							

Project:	Otterpool Park							
Job Number:	UA008926	Date:	08/09/2017					

Weather:	Dry
Engineer:	Roy Dennis

Monitoring Point Reference	Date/ Time	Atmos. Pressure (mbar)	Temp. (°C)	Well Pressure (mbar)	Flow Rate (I/h)	Time (sec)	CH4 (% v/v)	CO2 (% v/v)	O2 (% v/v)	CO (ppm)	H2S (ppm)	Depth to Water (m)	Depth to base (m)	Comments (all readings from GL, note datum height if different)						
						0	0.0	0.0	20.5	0	0									
						10	0.0	2.4	18.7	0	0									
				Peak:	<u>Peak:</u>	20	0.0	3.6	16.5	0	0									
				0.02	0.1	30	0.0	3.7	16.1	0	0									
	40					40	0.0	3.7	16.0	0	0									
	11:40							50	0.0	3.7	15.9	0	0							
вн6	17	990				60	0.0	3.7	15.9	0	0	11.39	12.91							
БПО	08/09/2017	990				90	0.0	3.8	15.8	0	0	11.33	12.91							
	60/					120	0.0	3.8	15.8	0	0									
	08									Steady:	Steady:	150	0.0	3.8	15.8	0	0			
							0.02	0.1	180	0.0	3.8	15.8	0	0						
								210	0.0	3.8	15.8	0	0							
						240	0.0	3.8	15.8	0	0									
						270	0.0	3.8	15.7	0	0									

Ambient Concentration							
CH4	0						
CO2	0						
02	20.5						
H2S	0						
СО	0						

Project:	Otterpool Park							
Job Number:	UA008926	Date:	08/09/2017					

Weather:	Dry
Engineer:	Roy Dennis

Monitoring Point Reference	Date/ Time	Atmos. Pressure (mbar)	Temp. (°C)	Well Pressure (mbar)	Flow Rate (I/h)	Time (sec)	CH4 (% v/v)	CO2 (% v/v)	O2 (% v/v)	CO (ppm)	H2S (ppm)	Depth to Water (m)	Depth to base (m)	Comments (all readings from GL, note datum height if different)		
						0	0.0	0.0	20.7	0	0					
						10	0.0	3.8	15.5	0	0					
				<u>Peak:</u>	<u>Peak:</u>	20	0.0	4.0	14.8	0	0					
						0.05	0.1	30	0.0	4.0	14.6	0	0			
	11:50								40	0.0	4.0	14.5	0	0		
	11:		000			50	0.0	4.0	14.5	0	0		12.77			
BH7	17	990				60	0.0	4.0	14.5	0	0					
БП	08/09/2017	990				90	0.0	4.0	14.5	0	0	_				
	60/					120	0.0	4.0	14.5	0	0					
	08			Steady:	Steady:	150	0.0	4.0	14.5	0	0					
						0.05	0.0	180	0.0	4.0	14.5	0	0			
						210	0.0	4.0	14.5	0	0					
						240	0.0	4.0	14.5	0	0					
						270	0.0	4.0	14.5	0	0					

Ambient Concentration						
CH4	0					
CO2	0					
02	20.7					
H2S	0					
со	0					

Project:	Otterpool Park							
Job Number:	UA008926	Date:	08/09/2017					

١	Weather:	Dry
E	Engineer:	Roy Dennis

Monitoring Point Reference	Date/ Time	Atmos. Pressure (mbar)	Temp. (°C)	Well Pressure (mbar)	Flow Rate (I/h)	Time (sec)	CH4 (% v/v)	CO2 (% v/v)	O2 (% v/v)	CO (ppm)	H2S (ppm)	Depth to Water (m)	Depth to base (m)	Comments (all readings from GL, note datum height if different)			
						0	0.0	0.0	20.6	0	0						
						10	0.0	0.3	20.4	0	0						
				<u>Peak:</u>	<u>Peak:</u>	20	0.0	1.6	19.7	0	0						
				0.05	0.1	30	0.0	1.7	19.5	0	0						
	12:00								40	0.0	1.7	19.5	0	0			
	12:					50	0.0	1.7	19.4	0	0		12.72				
BH8	17	990				60	0.0	1.8	19.4	0	0						
БПО	08/09/2017	990				90	0.0	1.8	19.4	0	0	_	12.72				
	60/				<u>Steady:</u>	120	0.0	1.8	19.4	0	0						
	80			Steady:		150	0.0	1.9	19.3	0	0						
						0.05	0.0	180	0.0	1.9	19.3	0	0				
						210	0.0	1.9	19.3	0	0						
						240	0.0	2.0	19.3	0	0						
						270	0.0	2.0	19.3	0	0						

Ambient Co	Ambient Concentration							
CH4	0							
CO2	0							
02	20.6							
H2S	0							
СО	0							

Project:	Otterpool Park								
Job Number:	UA008926	Date:	08/09/2017						

Weather:	Dry
Engineer:	Roy Dennis

Monitoring Point Reference	Date/ Time	Atmos. Pressure (mbar)	Temp. (°C)	Well Pressure (mbar)	Flow Rate (I/h)	Time (sec)	CH4 (% v/v)	CO2 (% v/v)	O2 (% v/v)	CO (ppm)	H2S (ppm)	Depth to Water (m)	Depth to base (m)	Comments (all readings from GL, note datum height if different)				
						0	0.0	0.0	20.6	0	0							
						10	0.0	2.1	19.5	0	0							
				<u>Peak:</u>	<u>Peak:</u>	20	0.0	2.5	17.9	0	0							
				0.00	0.0	30	0.0	2.5	17.6	0	0							
	12:10									40	0.0	2.5	17.5	0	0			
	12:							50	0.0	2.5	17.4	0	0					
вн9	117	990				60	0.0	2.5	17.4	0	0	11.24	12.65					
6119	08/09/2017	990				90	0.0	2.5	17.4	0	0	11.24	12.03					
	60/						120	0.0	2.6	17.4	0	0		,				
	08			Steady:	Steady:	150	0.0	2.6	17.4	0	0							
							0.00	0.0	180	0.0	2.6	17.3	0	0				
						210	0.0	2.6	17.3	0	0							
						240	0.0	2.6	17.3	0	0							
						270	0.0	2.6	17.3	0	0							

Ambient Co	Ambient Concentration							
CH4	0							
CO2	0							
02	20.6							
H2S	0							
СО	0							

Project:	Otterpool Park								
Job Number:	UA008926	Date:	08/09/2017						

Weather:	Dry
Engineer:	Roy Dennis

Monitoring Point Reference	Date/ Time	Atmos. Pressure (mbar)	Temp. (°C)	Well Pressure (mbar)	Flow Rate (I/h)	Time (sec)	CH4 (% v/v)	CO2 (% v/v)	O2 (% v/v)	CO (ppm)	H2S (ppm)	Depth to Water (m)	Depth to base (m)	Comments (all readings from GL, note datum height if different)										
						0	0.0	0.0	20.5	0	0													
						10	0.0	1.2	19.6	0	0													
				<u>Peak:</u>	Peak:	20	0.0	1.4	18.9	0	0													
				0.07	0.0	30	0.0	1.4	18.8	0	0													
	:20	990	000													40	0.0	1.5	18.7	0	0			
	12:									50	0.0	1.5	18.6	0	0									
BH10	17						60	0.0	1.5	18.6	0	0		12.7										
BITTO	08/09/2017	990				90	0.0	1.5	18.6	0	0	-	12.7											
	60/					120	0.0	1.5	18.6	0	0													
	80									Steady:	Steady:	Steady:	150	0.0	1.5	18.6	0	0						
									0.07	0.0	180	0.0	1.5	18.6	0	0								
									210	0.0	1.5	18.6	0	0										
						240	0.0	1.5	18.6	0	0													
						270	0.0	1.5	18.6	0	0													

Ambient Concentration							
CH4	0						
CO2	0						
02	20.5						
H2S	0						
СО	0						

Project:	Otterpool Park								
Job Number:	UA008926	Date:	15/09/2017						

Weather:	Dry
Engineer:	Roy Dennis

Monitoring Point Reference	Date/ Time	Atmos. Pressure (mbar)	Temp. (°C)	Well Pressure (mbar)	Flow Rate (I/h)	Time (sec)	CH4 (% v/v)	CO2 (% v/v)	O2 (% v/v)	CO (ppm)	H2S (ppm)	Depth to Water (m)	Depth to base (m)	Comments (all readings from GL, note datum height if different)											
						0	0.0	0.0	21.1	0	0														
						10	0.0	0.6	18.9	0	0														
				<u>Peak:</u>	Peak:	20	0.0	4.3	17.3	0	0														
				0.0	0.0	30	0.0	4.4	16.8	0	0														
	30																40	0.0	4.5	16.6	0	0			
	12:30										50	0.0	4.5	16.6	0	0									
WS103	17	999				60	0.0	4.5	16.5	0	0		4.955												
W3103	/20	999				90	0.0	4.5	16.5	0	0	-	4.333												
	15/09/2017					120	0.0	4.5	16.5	0	0														
	15		I		l		1					Steady:	Steady:	150	0.0	4.5	16.5	0	0						
				0.0	0.0	180	0.0	4.5	16.5	0	0														
								210	0.0	4.5	16.5	0	0												
						240	0.0	4.5	16.5	0	0														
						270	0.0	4.5	16.5	0	0														

Ambient Co	Ambient Concentration							
CH4	0							
CO2	0							
02	21.1							
H2S	0							
СО	0							

Project:	Otterpool Park								
Job Number:	UA008926	Date:	15/09/2017						

Weather:	Dry
Engineer:	Roy Dennis

Monitoring Point Reference	Date/ Time	Atmos. Pressure (mbar)	Temp. (°C)	Well Pressure (mbar)	Flow Rate (I/h)	Time (sec)	CH4 (% v/v)	CO2 (% v/v)	O2 (% v/v)	CO (ppm)	H2S (ppm)	Depth to Water (m)	Depth to base (m)	Comments (all readings from GL, note datum height if different)						
						0	0.0	0.0	21.0	0	0									
						10	0.0	1.6	19.1	0	0									
				<u>Peak:</u>	<u>Peak:</u>	20	0.0	2.4	18.1	0	0									
		15/09/2017 14:00 0001		0.01	0.0	30	0.0	2.4	17.7	0	0									
	00							40	0.0	2.4	17.6	0	0							
	14:								50	0.0	2.4	17.6	0	0						
WS104	17					60	0.0	2.4	17.6	0	0		3.77							
W3104	/20		1000	1000	1000	1000	1000	1000				90	0.0	2.4	17.6	0	0	-	3.//	
	60/					120	0.0	2.4	17.6	0	0									
	15			Steady:	Steady:	150	0.0	2.4	17.6	0	0									
								0.00	0.0	180	0.0	2.4	17.6	0	0					
									210	0.0	2.4	17.6	0	0						
								240	0.0	2.4	17.6	0	0							
						270	0.0	2.4	17.5	0	0									

Ambient Co	Ambient Concentration						
CH4	0						
CO2	0						
02	21.0						
H2S	0						
СО	0						

Project:	Otterpool Park								
Job Number:	UA008926	Date:	15/09/2017						

Weather:	Dry
Engineer:	Roy Dennis

Monitoring Point Reference	Date/ Time	Atmos. Pressure (mbar)	Temp. (°C)	Well Pressure (mbar)	Flow Rate (I/h)	Time (sec)	CH4 (% v/v)	CO2 (% v/v)	O2 (% v/v)	CO (ppm)	H2S (ppm)	Depth to Water (m)	Depth to base (m)	Comments (all readings from GL, note datum height if different)					
						0	0.0	0.0	20.5	0	0								
						10	0.0	0.4	21.0	0	0								
				<u>Peak:</u>	Peak:	20	0.0	2.1	19.2	0	0								
		1001				0.00	0.0	30	0.0	2.2	18.8	0	0						
	36								40	0.0	2.2	18.7	0	0					
	11:								50	0.0	2.2	18.6	0	0					
WS105	117					60	0.0	2.2	18.6	0	0	0.931	2.65						
W3103	/20	1001				90	0.0	2.2	18.6	0	0	0.551	2.03						
	15/09/2017										120	0.0	2.2	18.6	0	0			
	15			Steady:	Steady:	150	0.0	2.2	18.6	0	0								
							0.00	0.0	180	0.0	2.2	18.6	0	0					
						210	0.0	2.2	18.6	0	0								
											240	0.0	2.2	18.6	0	0			
						270	0.0	2.2	18.6	0	0								

Ambient Co	Ambient Concentration							
CH4	0							
CO2	0							
02	20.5							
H2S	0							
СО	0							

Project:	Otterpool Park								
Job Number:	UA008926	Date:	15/09/2017						

Weather:	Dry
Engineer:	Roy Dennis

Monitoring Point Reference	Date/ Time	Atmos. Pressure (mbar)	Temp. (°C)	Well Pressure (mbar)	Flow Rate (I/h)	Time (sec)	CH4 (% v/v)	CO2 (% v/v)	O2 (% v/v)	CO (ppm)	H2S (ppm)	Depth to Water (m)	Depth to base (m)	Comments (all readings from GL, note datum height if different)		
						0	0.0	0.0	20.4	0	0					
						10	0.0	0.7	20.0	0	0					
				<u>Peak:</u>	<u>Peak:</u>	20	0.0	1.7	19.6	0	0					
						0.00	0.0	30	0.0	1.8	19.3	0	0			
	13:50					40	0.0	1.9	19.3	0	0	1.935	2.98			
						50	0.0	2.0	19.2	0	0					
WS106	17	1000			-	60	0.0	2.0	19.2	0	0					
VV3100	/20	1000				90	0.0	2.0	19.1	0	0	1.555				
	15/09/2017					120	0.0	2.0	19.1	0	0					
	15			Steady:	Steady:	150	0.1	2.1	19.1	0	0					
						0.00	0.0	180	0.1	2.1	19.1	0	0			
						210	0.1	2.1	19.1	0	0					
						240	0.1	2.1	19.1	0	0					
						270	0.1	2.1	19.1	0	0					

A								
Ambient Co	Ambient Concentration							
CH4	0							
CO2	0							
02	20.4							
H2S	0							
СО	0							

Project:	Otterpool Park								
Job Number:	UA008926	Date:	15/09/2017						

Weather:	Dry
Engineer:	Roy Dennis

Monitoring Point Reference	Date/ Time	Atmos. Pressure (mbar)	Temp. (°C)	Well Pressure (mbar)	Flow Rate (I/h)	Time (sec)	CH4 (% v/v)	CO2 (% v/v)	O2 (% v/v)	CO (ppm)	H2S (ppm)	Depth to Water (m)	Depth to base (m)	Comments (all readings from GL, note datum height if different)				
						0	0.0	0.0	20.5	0	0							
						10	0.0	2.7	19.0	0	0							
				<u>Peak:</u>	<u>Peak:</u>	20	0.0	4.4	15.7	0	0							
					0.00	0.0	30	0.0	4.5	14.3	0	0						
	10:30					40	0.0	4.6	13.6	0	0	2.235	3					
	10:					50	0.0	4.6	13.3	0	0							
WS107	17	1000				60	0.0	4.7	13.1	0	0							
VV3107	15/09/2017	1000				90	0.0	4.7	13.0	0	0	2.233						
	60/							120	0.0	4.7	13.0	0	0					
	15			Steady:	Steady:	150	0.0	4.7	12.9	0	0							
							0.00	0.00	0.0	180	0.0	4.7	12.9	0	0			
							210	0.0	4.7	12.9	0	0						
						240	0.0	4.7	12.9	0	0							
						270	0.0	4.7	12.8	0	0							

Ambient Concentration							
CH4	0						
CO2	0						
02	20.5						
H2S	0						
СО	0						

Project:	Otterpool Park								
Job Number:	UA008926	Date:	15/09/2017						

Weather:	Dry
Engineer:	Roy Dennis

Monitoring Point Reference	Date/ Time	Atmos. Pressure (mbar)	Temp. (°C)	Well Pressure (mbar)	Flow Rate (I/h)	Time (sec)	CH4 (% v/v)	CO2 (% v/v)	O2 (% v/v)	CO (ppm)	H2S (ppm)	Depth to Water (m)	Depth to base (m)	Comments (all readings from GL, note datum height if different)				
						0	0.0	0.0	20.8	0	0							
						10	0.0	1.2	20.6	0	0							
				<u>Peak:</u>	<u>Peak:</u>	20	0.0	1.7	19.9	0	0							
					0.00	0.0	30	0.0	1.8	19.6	0	0						
	00									40	0.0	1.8	19.4	0	0			
	16:00						50	0.0	1.8	19.4	0	0						
WS108	17	1001	.01			60	0.0	1.8	19.4	0	0	2.572	2.7					
W3106	15/09/2017	1001				90	0.0	1.8	19.4	0	0	2.372	2.7					
	60/									120	0.0	1.8	19.4	0	0			
	15			Ste:	Steady:	Steady:	150	0.0	1.8	19.4	0	0						
								0.00	0.0	180	0.0	1.8	19.3	0	0			
								210	0.0	1.8	19.3	0	0					
						240	0.0	1.8	19.3	0	0							
						270	0.0	1.8	19.3	0	0							

Ambient Concentration							
CH4	0						
CO2	0						
02	20.8						
H2S	0						
СО	0						

Project:	Otterpool Park								
Job Number:	UA008926	Date:	15/09/2017						

Weather:	Dry
Engineer:	Roy Dennis

Monitoring Point Reference	Date/ Time	Atmos. Pressure (mbar)	Temp. (°C)	Well Pressure (mbar)	Flow Rate (I/h)	Time (sec)	CH4 (% v/v)	CO2 (% v/v)	O2 (% v/v)	CO (ppm)	H2S (ppm)	Depth to Water (m)	Depth to base (m)	Comments (all readings from GL, note datum height if different)				
						0	0.0	0.0	20.9	0	0							
						10	0.0	0.3	20.3	0	0							
				Peak:	<u>Peak:</u>	20	0.0	0.7	19.9	0	0							
		15/09/2017 12:12		0.00	0.0	30	0.0	0.7	19.8	0	0							
	12									40	0.0	0.7	19.8	0	0			
	12:					50	0.0	0.7	19.8	0	0	_	3.696					
WS112	17					60	0.0	0.7	19.8	0	0							
VV3112	/20		1001				90	0.0	0.7	19.8	0	0	_	3.090				
	60/					120	0.0	0.7	19.8	0	0							
	15			Steady:	Steady:	150	0.0	0.7	19.8	0	0							
				0.00	0.0	180	0.0	0.7	19.8	0	0							
						210	0.0	0.7	19.8	0	0							
						240	0.0	0.7	19.8	0	0							
						270	0.0	0.7	19.8	0	0							

Ambient Concentration							
CH4	0						
CO2	0						
02	20.9						
H2S	0						
СО	0						

Project:	Otterpool Park								
Job Number:	UA008926	Date:	15/09/2017						

Weather:	Dry
Engineer:	Roy Dennis

Monitoring Point Reference	Date/ Time	Atmos. Pressure (mbar)	Temp. (°C)	Well Pressure (mbar)	Flow Rate (I/h)	Time (sec)	CH4 (% v/v)	CO2 (% v/v)	O2 (% v/v)	CO (ppm)	H2S (ppm)	Depth to Water (m)	Depth to base (m)	Comments (all readings from GL, note datum height if different)							
						0	0.0	0.0	20.9	0	0										
						10	0.0	0.3	20.8	0	0										
				<u>Peak:</u>	<u>Peak:</u>	20	0.0	0.6	20.5	0	0										
				0.01	0.0	30	0.0	0.6	20.5	0	0										
	12:03											40	0.0	0.6	20.5	0	0				
									50	0.0	0.6	20.5	0	0			Not true groundwater in well.				
BH101	17	1001	01			60	0.0	0.6	20.5	0	0	10.13	I 10 18 I	This is leftover water in the							
PUIOI	15/09/2017	1001				90	0.0	0.6	20.5	0	0			well endcap from infiltrating							
	60/												120	0.0	0.6	20.5	0	0			testing
	15			Steady:	Steady:	150	0.0	0.6	20.5	0	0										
											0.01	0.0	180	0.0	0.6	20.5	0	0			
															210	0.0	0.6	20.5	0	0	
							240	0.0	0.6	20.5	0	0									
						270	0.0	0.6	20.5	0	0										

Ambient Concentration							
CH4	0						
CO2	0						
O2	20.9						
H2S	0						
СО	0						

Project:	Otterpool Park								
Job Number:	UA008926	Date:	15/09/2017						

Weather:	Dry
Engineer:	Roy Dennis

Monitoring Point Reference	Date/ Time	Atmos. Pressure (mbar)	Temp. (°C)	Well Pressure (mbar)	Flow Rate (I/h)	Time (sec)	CH4 (% v/v)	CO2 (% v/v)	O2 (% v/v)	CO (ppm)	H2S (ppm)	Depth to Water (m)	Depth to base (m)	Comments (all readings from GL, note datum height if different)						
						0	0.0	0.0	20.6	0	0									
						10	0.0	0.1	20.5	0	0									
				<u>Peak:</u>	<u>Peak:</u>	20	0.0	2.6	19.4	0	0									
	11:51		1001	0.00	0.0	30	0.0	2.8	18.7	0	0									
							40	0.0	2.8	18.5	0	0								
							50	0.0	2.8	18.5	0	0								
BH102	17	1001				60	0.0	2.8	18.4	0	0		9.59							
611102	/20	1001				90	0.0	2.8	18.5	0	0	-								
	15/09/2017					120	0.0	2.8	18.5	0	0									
	15									Steady:	Steady:	150	0.0	2.8	18.4	0	0			
								0.00	0.0	180	0.0	2.8	18.4	0	0					
								210	0.0	2.8	18.4	0	0							
					2	240	0.0	2.8	18.5	0	0									
						270	0.0	2.8	18.5	0	0									

Ambient Concentration							
CH4 0							
CO2	0						
02	20.6						
H2S	0						
СО	0						

Project:	Otterpool Park								
Job Number:	UA008926	Date:	15/09/2017						

Weather:	Dry
Engineer:	Roy Dennis

Monitoring Point Reference	Date/ Time	Atmos. Pressure (mbar)	Temp. (°C)	Well Pressure (mbar)	Flow Rate (I/h)	Time (sec)	CH4 (% v/v)	CO2 (% v/v)	O2 (% v/v)	CO (ppm)	H2S (ppm)	Depth to Water (m)	Depth to base (m)	Comments (all readings from GL, note datum height if different)				
						0	0.0	0.0	20.2	0	0							
						10	0.0	0.0	20.1	0	0							
				<u>Peak:</u>	Peak:	20	0.0	0.1	20.0	0	0							
			1000	0.00	0.0	30	0.0	0.1	19.9	0	0							
	12:00						40	0.0	0.1	19.8	0	0						
							50	0.0	0.1	19.8	0	0						
BH103	17	1000			<u>Steady:</u>	60	0.0	0.1	19.8	0	0	1.477	8.24					
611103	/20	1000				90	0.0	0.1	19.8	0	0	1.4//						
	15/09/2017					120	0.0	0.2	19.7	0	0							
	15			Steady:		150	0.0	0.2	19.7	0	0							
							0.00	0.00	0.0	180	0.0	0.2	19.6	0	0			
						210	0.0	0.2	19.6	0	0							
						240	0.0	0.2	19.6	0	0							
						270	0.0	0.2	19.6	0	0							

Ambient Concentration							
CH4 0							
CO2	0						
02	20.5						
H2S	0						
СО	0						

Project:		Otterpool Pa	ark
Job Number:	UA008926	Date:	15/09/2017

Weather:	Dry
Engineer:	Roy Dennis

Monitoring Point Reference	Date/ Time	Atmos. Pressure (mbar)	Temp. (°C)	Well Pressure (mbar)	Flow Rate (I/h)	Time (sec)	CH4 (% v/v)	CO2 (% v/v)	O2 (% v/v)	CO (ppm)	H2S (ppm)	Depth to Water (m)	Depth to base (m)	Comments (all readings from GL, note datum height if different)			
						0	0.0	0.0	20.6	0	0						
						10	0.1	1.6	18.7	0	0						
				<u>Peak:</u>	<u>Peak:</u>	20	0.1	1.6	17.9	0	0						
				0.00	0.0	30	0.1	1.6	17.8	0	0						
	30					40	0.0	1.6	17.8	0	0						
	14:30					50	0.0	1.6	17.8	0	0						
BH104		1000				60	0.0	1.6	17.8	0	0	3.474	6.45				
вп104	/20		1000	1000				90	0.0	1.6	17.8	0	0	3.474	0.45		
	15/09/2017				i							120	0.0	1.6	17.8	0	0
	15,			Steady:	Steady:	150	0.0	1.6	17.7	0	0						
				0.00	0.0	180	0.0	1.6	17.7	0	0						
					210	0.0	1.6	17.7	0	0							
					240	0.0	1.6	17.7	0	0							
						270	0.0	1.6	17.7	0	0						

Ambient Concentration					
CH4	0				
CO2	0				
02	20.6				
H2S	0				
СО	0				

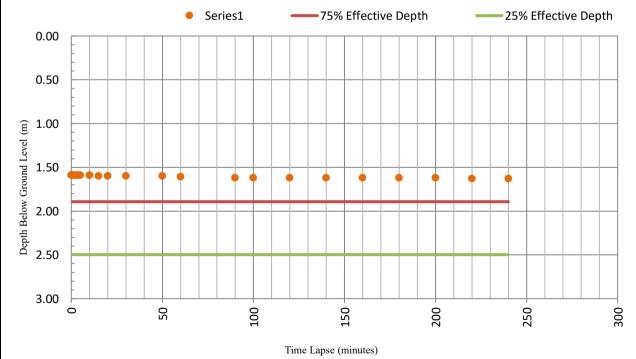
Project:		Otterpool Pa	ark
Job Number:	UA008926	Date:	15/09/2017

Weather:	Dry
Engineer:	Roy Dennis

Monitoring Point Reference	Date/ Time	Atmos. Pressure (mbar)	Temp. (°C)	Well Pressure (mbar)	Flow Rate (I/h)	Time (sec)	CH4 (% v/v)	CO2 (% v/v)	O2 (% v/v)	CO (ppm)	H2S (ppm)	Depth to Water (m)	Depth to base (m)	Comments (all readings from GL, note datum height if different)						
						0	0.0	0.0	20.8	0	0									
						10	0.0	0.4	19.8	0	0									
				<u>Peak:</u>	<u>Peak:</u>	20	0.0	2.7	18.1	0	0									
				-0.02	0.0	30	0.0	3.0	17.3	0	0									
	22					40	0.0	3.3	16.8	0	0									
	11:22					50	0.0	3.5	16.4	0	0									
BH105	17	1001	1001				60	0.0	3.6	16.0	0	0	3.378	7.31						
611103	15/09/2017			1001	1001	1001	1001	1001				90	0.0	3.8	14.7	0	0	3.376	7.31	
	60/							-	120	0.0	3.9	15.6	0	0						
	15			Steady:	Steady:	150	0.0	3.9	15.5	0	0									
				-0.02	0.0	180	0.0	3.9	15.4	0	0									
						210	0.0	4.0	15.4	0	0									
					240	0.0	4.0	15.3	0	0										
						270	0.0	4.0	15.3	0	0									

Ambient Concentration					
CH4	0				
CO2	0				
02	20.8				
H2S	0				
СО	0				

	•	OAKAWAY INF		ON ILOI				
Project						Trial Pit No		
Otterpool F	Park							
Job No.	Date	Ground Level	(mAOD)	Co-Ordinates		TP101		
UA008926	15/08/2017	7 71.	59	E 610259 N 137376		11 101		
Contractor		L				Sheet		
Arcadis Co	nsulting (UK) Lim	ited				1 of 1		
Pit Dimension Price	or To Test		Pit D	imension After Test	<u> </u>			
Length		2.30		Length		2.70		
Width		0.50		Width		0.50		
Depth		2.00		Depth		2.50		
Time Lapsed (n	ninutes) De	epth to Water (m bgl)	Time	e Lapsed (minutes)	Dep	oth to Water (m bgl)		
0 0.2		1.41 1.43						
0.4		1.44						
0.6		1.45						
0.8		1.46						
1		1.48						
2		1.51	1					
3		1.54						
4		1.59						
5 10		1.60 1.79						
15		1.79						
20		1.91						
30		1.96						
50		Dry						
	• Se	ries1 — 7	'5% Effecti	ve Depth	25% Ef	fective Depth		
0.00								
-								
0.50								
(E)								
1.00								
1.00 Pebth Below Ground Level (m) 2.00								
⁷ 1.50								
MO 1.50								
Bel .								
2.00		•						
- - -								
2.50								
0	10	20	30	40	50	09		
		Time Lap	ese (minutes)					
		Infiltration Rate		10 ⁻⁴ m/s				
All dimensions in metre	es, sides collasped so	Client			Logge	d Ву		
second test could n		Shepw	ay Distric	t Council		HK		
		<u> </u>				1113		


Project						Trial Pit No
Otterpool Pa	ark					
Job No.	Date	Ground Level ((mAOD)	Co-Ordinates		TP102
UA008926	14/08/2017					
Contractor						Sheet
	nsulting (UK) Limi	ted	_			1 of 1
Pit Dimension Prior	r To Test		Pit D	imension After Test		
Length		2.70		Length		2.70
Width Depth		0.50 2.50		Width Depth		0.50 2.50
Time Lapsed (m	inutes) De	pth to Water (m bgl)	Time	E Lapsed (minutes)	De	pth to Water (m bgl)
0		1.65		80	20	1.65
0.2		1.65		100		1.65
0.4		1.65		120		1.65
0.6		1.65		140		1.65
0.8		1.65		160		1.65
1		1.65		180		1.65
2		1.65 1.65		200		1.65
3 4		1.65		220 240		1.65 1.65
5		1.65		240		1.05
10		1.65				
15		1.65				
20		1.65				
30		1.65				
50		1.65				
60		1.65	<u> </u>			
	Ser	ies1 —7	5% Effectiv	ve Depth	25% E ¹	ffective Depth
0.00						
-						
-						
0.50						
(E)						
<u>ş</u> 1.00						
d Le						
uno.						
5 1.50 □						
1.50 Palow Ground Level (m) 1.50 Palow Ground 2.00	T T T T		' 📍			
bth.						
g 2.00						
2.50						
2.50	- 20	100 -	150 -	200 -	250 -	300 -
			se (minutes)	2	7	m
	Infiltration Rate	= cannot be cal		lue to lack of s	soakage	
۸۱۱ مانم ۱۱۱		Client			Logge	d By
All dimensions	s in fileues	Shepw	ay Distric	t Council		HK

•	SOAKAWAY INFIL	TIVATION TEOT		
Project				Trial Pit No
Otterpool Park				
Job No. Date	Ground Level (m	nAOD) Co-Ordina	tes	TP103
UA008926 14/08/201		E6 ⁻	13536.69 36951.58	11 103
Contractor	<u> </u>		00001.00	Sheet
Arcadis Consulting (UK) Lin	nited			1 of 1
Pit Dimension Prior To Test		Pit Dimension Afte	r Test	
Length	2.90	Length		2.90
Width	0.40	Width		2.40
Depth Time Lapsed (minutes)	2.50 Depth to Water (m bgl)	Depth Time Lapsed (mir	nutos) Do	2.50 epth to Water (m bgl)
0 7 51 120	1.00 1.07 1.21 1.22			
0.00	eries1 — 75	% Effective Depth	25% E	Effective Depth
0.50				
(ii)				
3 1.00				
T pu				
1.50 Potential Properties 1.50 Potential Pro				
# H				
2.00				
				†
2.50	04 09 09	08	00	0. 0.
2	4 0	∞	100	120
	Time Lapse	(minutes)		
Infiltration Rat	e = cannot be calc		c of soakage	
All dimensions in metres	Client	· District O	Logge	ed By
	Shepwa	y District Council		LK

Project					Trial Pit	No
Otterpool Page	ark					
Job No. Date		Ground Level	(mAOD)	Co-Ordinates	TP10	14
UA008926	16/08/2017	65.	76	E609988.22 W136627.81		•
Contractor					Sheet	
Arcadis Cor	sulting (UK) Limited				1 of	1
Pit Dimension Prior	r To Test		Pit Di	mension After Test	·	
Length		2.30		Length	2.20	
Width		0.50		Width	0.50	
Depth		2.80		Depth	2.70	
Time Lapsed (m	inutes) Depth to	Water (m bgl)	Time	e Lapsed (minutes)	Depth to Water (m	bgl)
0		1.59		90	1.62	
0.2		1.59		100	1.62	
0.4		1.59		120	1.62	
0.6		1.59		140	1.62	
0.8		1.59		160	1.62	
1		1.59		180	1.62	
2		1.59		200	1.62	
3		1.59		220	1.63	
4		1.59		240	1.63	
5		1.59				
10		1.59				
15		1.60				
20		1.60				
30		1.60				
50 60		1.60 1.61				

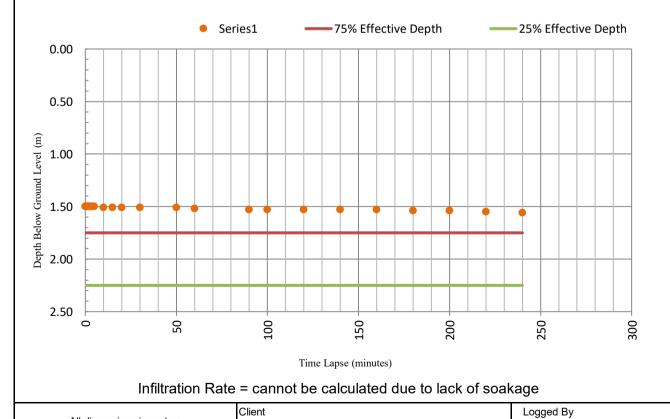
Infiltration Rate = cannot be calculated due to lack of soakage

Shepway District Council

Logged By

HK

Client


All dimensions in metres

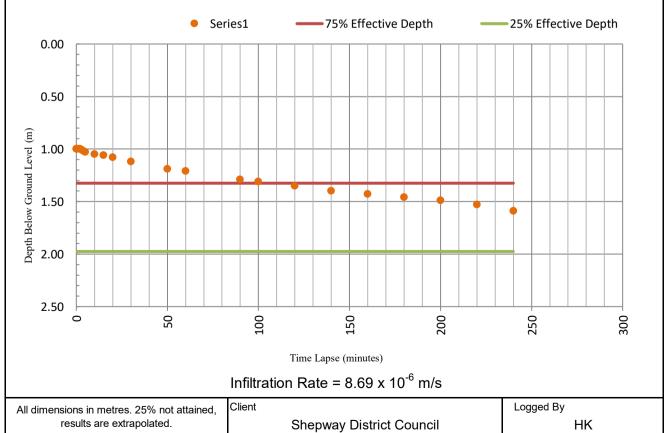
HK

SOAKAWAY INFILTRATION TEST

Project Otterpool Pa	ark				Trial Pit No	
Job No. UA008926	Date 22/08/2017	Ground Level (/2017 77.4		Co-Ordinates E612677.41 W136513.96		
Contractor		•			Sheet	
Arcadis Con	sulting (UK) Limited				1 of 1	
Pit Dimension Prior	To Test		Pit Di	mension After Test		
Length		2.30		Length	2.30	
Width		0.50		Width	0.50	
Depth		2.50		Depth	2.50	
Time Lapsed (mi	nutes) Depth to	Water (m bgl)	Time	Lapsed (minutes)	Depth to Water (m bgl	
0		1.50		90	1.53	
0.2		1.50		100	1.53	
0.4		1.50		120	1.53	
0.6		1.50				1.53
0.8		1.50 160		1.53		
1		1.50		180	1.54	
2		1.50		200	1.54	
3		1.50		220	1.55	
4		1.50		240	1.56	
5		1.50				
10		1.51				
15		1.51				
20		1.51				
30		1.51				
50		1.51				
60		1.52				

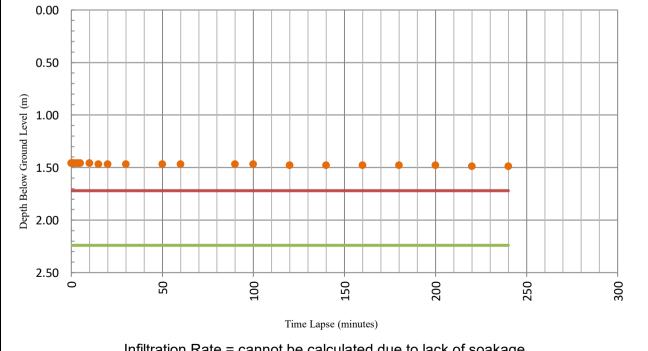
Shepway District Council

All dimensions in metres



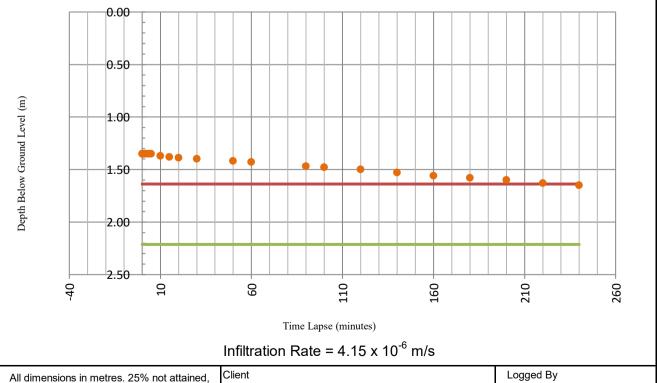
		SOAK	AWAY INFIL	TRATI	ON TEST		/-			
Project								Trial Pit No		
Otterpool P	ark									
Job No.	Date		Ground Level (r	nAOD)	Co-Ordinat	tes		TP107		
UA008926	16/08	3/2017	92.6	7		0704.30 36503.22		11 107		
Contractor	1		<u> </u>		1		She	eet		
Arcadis Co	nsulting (Uk	() Limited						1 of 1		
Pit Dimension Price		,		Pit D	imension Afte	r Test				
Length		:	2.20		Length			2.20		
Width			0.50		Width			0.50		
Depth		:	2.70		Depth			2.70		
Time Lapsed (m	ninutes)	Depth to \	Water (m bgl)	Tim	e Lapsed (min	utes)	Depth t	to Water (m bgl)		
0			1.39		90			1.40		
0.2			1.39		100			1.40		
0.4			1.39		120		1.41			
0.6		1.39			140		1.41			
0.8		1.39			160			1.41		
1			1.39		1.41					
2		1.39		200			1.41			
3		1.39		1.39 220					1.41	
4			1.39		240			1.41		
5			1.39							
10			1.39							
15		1	1.39							
20			1.39							
30		1	1.40							
50			1.40							
60		1	1.40							
0.00		Series1	 75	% Effecti	ve Depth	2	25% Effec	tive Depth		
0.50										
‡										
î										
ਰ 1.00										
Lev										
pun [_ _]										
1.50 1.50 1.50	• • •	•	• •	•	• •	• •				
š 1.50										
Bel										
로										

O.50 1.00 2.50 Infiltration Rate = cannot be calculated due to lack of soakage All dimensions in metres Client Shepway District Council HK



Project Otterpool Pa	rk					Trial Pit No	
Job No. UA008926	Date 17/08/2017	,		Co-Ordinates E 611770.6 N 136484.4		TP108	
Contractor				11 130404.4	Shee	et	
Arcadis Con	sulting (UK) Limited					1 of 1	
Pit Dimension Prior	- ,		Pit Di	mension After Test			
Length		2.20		Length		2.20	
Width		0.50		Width		0.50	
Depth		2.30		Depth		2.30	
Time Lapsed (mir	nutes) Depth to	Water (m bgl)	Time	Lapsed (minutes)	Depth to	Water (m bgl)	
0		1.00		90		1.29	
0.2		1.00		100		1.31	
0.4		1.00		120		1.35	
0.6		1.00		140		1.40	
0.8		1.00		160		1.43	
1		1.00		180		1.46	
2		1.00		200		1.49	
3		1.01		220		1.53	
4		1.02		240		1.59	
5		1.03					
10		1.05					
15		1.06					
20		1.08					
30		1.12					
50		1.19					
60		1.21					

		SOAKAWAY INF	FILTRATI	ON TEST		AROADI		
Project						Trial Pit No		
Otterpool F	Park							
Job No.	Date	Ground Leve	Ground Level (mAOD) Co-Ordinates			TP109		
114000006	24/09/20	17 90	.25	E 612231.6	61	11 103		
UA008926	21/08/20	17 00	.25	N 136228.2				
Contractor		:+- d				Sheet		
Pit Dimension Pri	onsulting (UK) Li	miled	Pit D	imension After Test		1 of 1		
Length	01 10 1030	2.30	110	Length		2.30		
Width		0.50		Width		0.50		
Depth		2.50		Depth		2.50		
Time Lapsed (r	ninutes)	Depth to Water (m bgl)	Time	e Lapsed (minutes)	Dep	oth to Water (m bgl)		
0		1.46		90		1.47		
0.2		1.46		100		1.47		
0.4		1.46		120		1.48		
0.6		1.46		140		1.48		
0.8		1.46		160				1.48
1		1.46		1.46 180		1.48		
2		1.46		200				
3		1.46		220		1.49		
4		1.46		240	1.49			
5		1.46						
10		1.46						
15		1.47						
20		1.47						
30		1.47						
50 60		1.47 1.47						
	• 9		75% Effecti	ve Depth —	— 25% Ef	fective Depth		
0.00	0.00							
[
0.50								
0.50								
(iii)								
ভূ 1.00								
1.00 Foreign (m)								

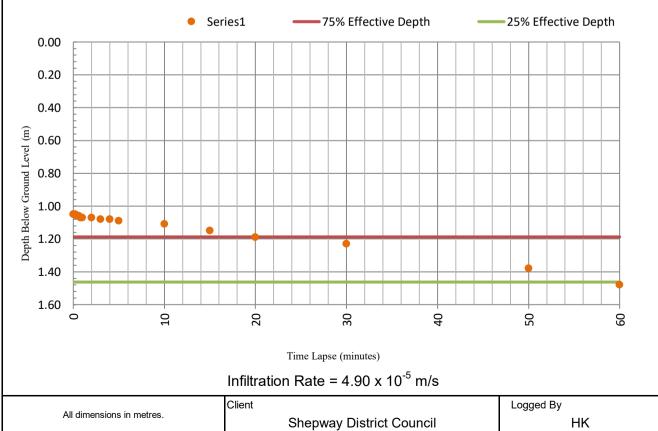


Infiltration Rate = cannot be calculated due to lack of soakage

All dimensions in metres	Client	Logged By
All dimensions in metres	Shepway District Council	HK

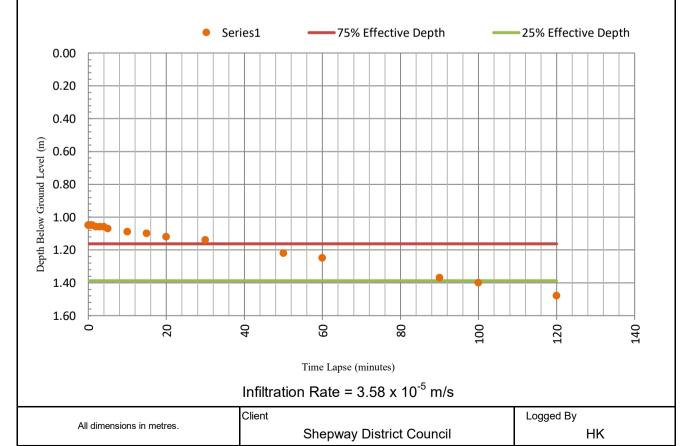
	SOAK	AWAY INFIL	.TRATIO	ON TEST		AR	
Project						Tri	ial Pit No
Otterpool Page 1	ark						
Job No.	Date	Ground Level (n	mAOD) Co-Ordinates			Т т	P110
UA008926	22/08/2017	101.1	4	E 6109 N 1360			
Contractor	<u>I</u>					Sheet	
Arcadis Cor	nsulting (UK) Limited					1	l of 1
Pit Dimension Prior	r To Test		Pit Di	mension After Te	est	<u> </u>	
Length		2.10		Length		2.	10
Width		0.50		Width		0.9	50
Depth		2.50		Depth		2.	
Time Lapsed (m	inutes) Depth to	Water (m bgl)	Time	Lapsed (minute	s)	Depth to W	ater (m bgl)
0		1.35		90		1.4	
0.2		1.35		100		1.4	
0.4		1.35		120		1.50	
0.6		1.35		140		1.5	
			160			1.56	
1			180			1.	
2		1.35		200		1.0	
3		1.35		220			63
4		1.35 1.35		240		1.6	05
5		1.35					
10							
15 20		1.38 1.39					
30		1.40					
50 50		1.42					
60		1.43					
(ii)	Series1	75	% Effectiv	ve Depth	259	% Effective	Depth
Ind L							
organia de la company							

All dimensions in metres. 25% not attained, results are extrapolated.


ent
Shepway District Council

Logged By HK

HK


Project						Trial Pit No
Otterpool Pa	rk					
Job No.	Date	Ground Level (mAOD)		Co-Ordinates		TP112
UA008926	16/08/2017	96.4	4	E611665.00 W135941.12		
Contractor					S	heet
Arcadis Cons	sulting (UK) Limited					1 of 1
Pit Dimension Prior	To Test		Pit Di	mension After Test	-	
Length	2	2.30		Length		2.30
Width	().50		Width		0.50
Depth	•	1.60		Depth		1.50
Time Lapsed (min	utes) Depth to V	Vater (m bgl)	Time	Lapsed (minutes)	Dept	h to Water (m bgl)
0	1	.05				
0.2		.05				
0.4		.06				
0.6		.06				
8.0		.07				
1		.07				
2		.07				
3		.08				
4		.08				
5		.09				
10		.11				
15		.15				
20		.19				
30		.23				
50		.38				
60	1	.48				

SOAKAWAY INFILTRATION TEST

Project						Trial Pit No
Otterpool Pa	ark					
Job No.	Date	Ground Level (mAOD) Co-Ordinates			TP112	
UA008926	16/08/2017	96.4	.4	E611665.00 W135941.12		11 112
Contractor					She	et
Arcadis Con	sulting (UK) Limited					1 of 1
Pit Dimension Prior	To Test		Pit Di	mension After Test		
Length	;	2.30		Length		2.30
Width	(0.50		Width		0.50
Depth		1.50		Depth		1.50
Time Lapsed (mi	nutes) Depth to \	Water (m bgl)	Time	Lapsed (minutes)	Depth t	o Water (m bgl)
0	1	1.05		90		1.37
0.2		1.05		100		1.40
0.4		1.05		120		1.48
0.6		1.05				
0.8		1.05				
1		1.05				
2		1.06				
3		1.06				
4		1.06				
5		1.07				
10		1.09				
15		1.10				
20		1.12				
30		1.14				
50 60		1.22 1.25				

BH101

Project

Otterpool Park

Client

Shepway District Council

Project No. Ground Level (m OD)

UA008926-43-02 101.23

610,950.1

Easting (OD) Northing (OD)

136,019.1

08/09/2017

Test Date

Sheet
1 of 1

Depth & Purge Records:		Response Zone Details:	
Variable Head Test Type:	Falling Head	Installation Diameter (m):	0.05
Depth to Base of Borehole (m bgl):	10.00	Height of Installation above GL (m):	0.00
Depth to Pre Test Goundwater Level (m bgl):	9.92	Diameter of Borehole (m):	0.05
Time Taken to Purge (minutes):	0	Top of Test Section (m bgl):	6.00
Volume of Water Purged (ltrs):	0	Bottom of Test Section (m bgl):	10.00

Elapsed Time (minutes)	Depth to Water (m bgl)	Head (m)	Proportional Head (H _t /H _o)	0.1 1.00 T	10.0
0	0.00	10.00	1.00	1.00 T	
0	0.00	10.00	0.00		
0	0.00	10.00	0.00	-	
0	0.00	10.00	0.00		
0	0.00	10.00	0.00		
0	0.00	10.00	0.00		
0	0.00	10.00	0.00		
0	0.00	10.00	0.00		
0	0.00	10.00	0.00		
0	0.00	10.00	0.00		
0	0.00	10.00	0.00	-	
0	0.00	10.00	0.00		
0	0.00	10.00	0.00	<u> </u>	$H_t/H_1 = 0.37$
0	0.00	10.00	0.00	H _t /H ₁	
0	0.00	10.00	0.00		
0	0.00	10.00	0.00		
0	0.00	10.00	0.00		
0	0.00	10.00	0.00		
0	0.00	10.00	0.00	-	
0	0.00	10.00	0.00		
0	0.00	10.00	0.00		
0	0.00	10.00	0.00		
0	0.00	10.00	0.00		
				0.10	
					Time (min)

Calculated Parameters

Cross Sectional Area of Response Zone: 1.96E-03
Intake Factor: 1.00E-01

Time Lag (seconds): 0

NOTE: Ht/Ho = 0.37 has not been satisfied. Therefore data has been extrapolated from the last two readings to achive Ht/Ho = 0.37. Permeability is therefore approximate only.

Permeability (m/s)	#DIV/0!
--------------------	---------

Remarks

Unable to maintain a head of water. Entire IBC (1000 L) emptied into borehole in 6 minutes

Project

Otterpool Park

Client

Shepway District Council

Project No. **UA008926-43-02**

Ground Level (m OD) **101.23**

101.23Northing (OD)

611,768.1

Easting (OD)

136,019.1

08/09/2017

Test Date

Sheet 1 of 1

 Depth & Purge Records:
 Response Zone Details:

 Variable Head Test Type:
 Falling Head
 Installation Diameter (m):

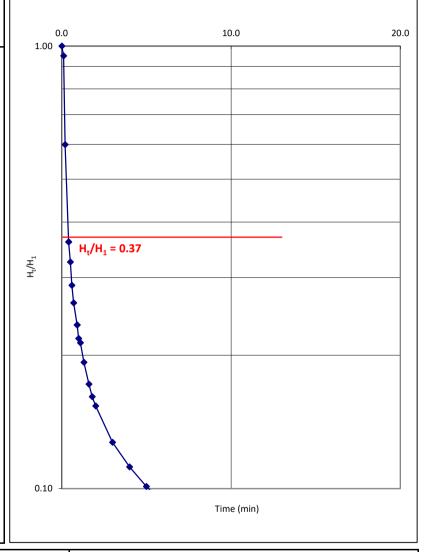
 Depth to Base of Borehole (m bgl):
 10.00
 Height of Installation above GL (m):

 Depth to Pre Test Goundwater Level (m bgl):
 1.84
 Diameter of Borehole (m):

 Time Taken to Purge (minutes):
 0
 Top of Test Section (m bgl):

Installation Diameter (m):

Height of Installation above GL (m):


Diameter of Borehole (m):

Top of Test Section (m bgl):

Bottom of Test Section (m bgl):

10.00

Volume of W	0		
Elapsed Time (minutes)	Depth to Water (m bgl)	Head (m)	Proportional Head (H _t /H _o)
0	0.00	10.00	1.00
0.1	0.09	9.91	0.95
0.2	0.74	9.26	0.60
0.4	1.18	8.82	0.36
0.4	1.18	8.82	0.36
0.5	1.24	8.76	0.33
0.6	1.31	8.69	0.29
0.7	1.36	8.64	0.26
0.9	1.41	8.59	0.23
0.9	1.41	8.59	0.23
1	1.44	8.56	0.22
1.1	1.45	8.55	0.21
1.3	1.49	8.52	0.19
1.6	1.52	8.48	0.17
1.8	1.54	8.46	0.16
2	1.56	8.44	0.15
3	1.61	8.39	0.13
4	1.63	8.37	0.11
5	1.65	8.35	0.10
6	1.67	8.33	0.09
7	1.68	8.32	0.09
8	1.69	8.31	0.08
9	1.70	8.31	0.08

Calculated Parameters

Cross Sectional Area of Response Zone: 1.96E-03
Intake Factor: 1.00E-01
Time Lag (seconds): 23.4

NOTE: Ht/Ho = 0.37 has not been satisfied. Therefore data has been extrapolated from the last two readings to achive Ht/Ho = 0.37. Permeability is therefore approximate only.

Permeability (m/s)	1.22E-05
--------------------	----------

Remark

For the permeabilty test, 100 litres of water was added to the borehole.

Project

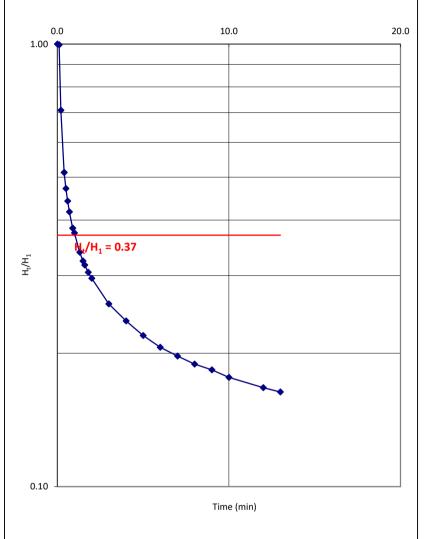
Otterpool Park

Client

Shepway District Council

Project No. Ground Level (m OD) **UA008926-43-02 101.23**

UA008926-43-02 101.23
Easting (OD) Northing (OD)


611,768.1 136,019.1

Test Date **08/09/2017**

Sheet
1 of 1

Depth & Purge Records:		Response Zone Details:	
Variable Head Test Type:	Falling Head	Installation Diameter (m):	0.05
Depth to Base of Borehole (m bgl):	10.00	Height of Installation above GL (m):	0.00
Depth to Pre Test Goundwater Level (m bgl):	1.84	Diameter of Borehole (m):	0.05
Time Taken to Purge (minutes):	0	Top of Test Section (m bgl):	4.00
Volume of Water Purged (ltrs):	0	Bottom of Test Section (m bgl):	10.00

Volume of Water Purged (ltrs):			0
Elapsed Time (minutes)	Depth to Water (m bgl)	Head (m)	Proportional Head (H _t /H _o)
0	0.00	10.00	1.00
0.1	0.01	9.99	1.00
0.2	0.54	9.46	0.71
0.4	0.90	9.10	0.51
0.4	0.90	9.10	0.51
0.5	0.97	9.03	0.47
0.6	1.03	8.97	0.44
0.7	1.07	8.93	0.42
0.9	1.13	8.87	0.38
0.9	1.13	8.87	0.38
1	1.15	8.85	0.37
1.3	1.22	8.78	0.34
1.5	1.25	8.76	0.32
1.6	1.26	8.74	0.32
1.8	1.28	8.72	0.30
2	1.30	8.70	0.30
3	1.36	8.64	0.26
4	1.40	8.60	0.24
5	1.44	8.56	0.22
6	1.46	8.54	0.21
7	1.48	8.52	0.20
8	1.49	8.51	0.19
9	1.50	8.50	0.18

Calculated Parameters

Cross Sectional Area of Response Zone: 1.96E-03
Intake Factor: 1.00E-01

Time Lag (seconds): 62.4

NOTE: Ht/Ho = 0.37 has not been satisfied. Therefore data has been extrapolated from the last two readings to achive Ht/Ho = 0.37. Permeability is therefore approximate only.

Permeability (m/s)	4.57E-06
--------------------	----------

Remark

For the permeabilty test, 300 litres of water was added to the borehole.

Project

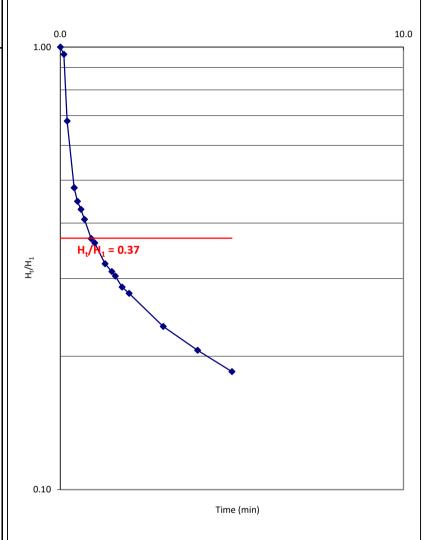
Otterpool Park

Client

Shepway District Council

Project No. Ground Level (m OD)

UA008926-43-02


Easting (OD) **611,768.1**

101.23 Northing (OD) 136,019.1

Test Date **08/09/2017** Sheet 1 of 1

Depth & Purge Records:		Response Zone Details:		
Variable Head Test Type:	Falling Head	Installation Diameter (m):	0.05	
Depth to Base of Borehole (m bgl):	10.00	Height of Installation above GL (m):	0.00	
Depth to Pre Test Goundwater Level (m bgl):	1.84	Diameter of Borehole (m):	0.05	
Time Taken to Purge (minutes):	0	Top of Test Section (m bgl):	4.00	
Volume of Water Purged (Itrs):	0	Bottom of Test Section (m bgl):	10.00	

volume of w	ater Purged (itr	5).	- 0
Elapsed Time (minutes)	Depth to Water (m bgl)	Head (m)	Proportional Head (H _t /H _o)
0	0.00	10.00	1.00
0.1	0.07	9.93	0.96
0.2	0.59	9.41	0.68
0.4	0.96	9.05	0.48
0.4	0.96	9.05	0.48
0.5	1.02	8.99	0.45
0.6	1.05	8.95	0.43
0.7	1.09	8.91	0.41
0.9	1.16	8.84	0.37
0.9	1.16	8.84	0.37
1	1.18	8.82	0.36
1.3	1.24	8.76	0.32
1.5	1.27	8.73	0.31
1.6	1.28	8.72	0.30
1.8	1.31	8.69	0.29
2	1.33	8.67	0.28
3	1.41	8.59	0.23
4	1.46	8.54	0.21
5	1.50	8.50	0.18
0	0.00	10.00	0.00
0	0.00	10.00	0.00
0	0.00	10.00	0.00
0	0.00	10.00	0.00

Calculated Parameters

Cross Sectional Area of Response Zone: 1.96E-03
Intake Factor: 1.00E-01

Time Lag (seconds): 53.4

NOTE: Ht/Ho = 0.37 has not been satisfied. Therefore data has been extrapolated from the last two readings to achive Ht/Ho = 0.37. Permeability is therefore approximate only.

Permeability (m/s)	5.35E-06
--------------------	----------

Remarks

For the permeabilty test, 600 litres of water was added to the borehole.

Otterpool Park

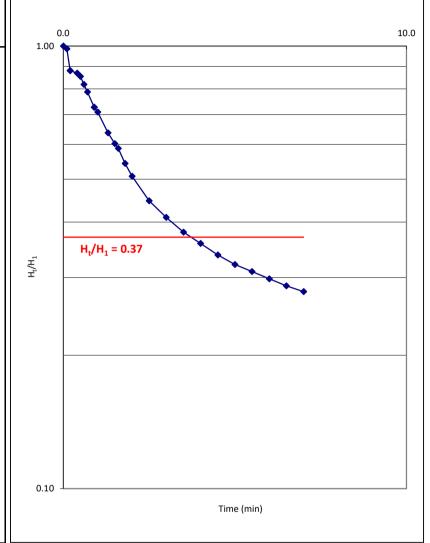
Client

Shepway District Council

Project No. Ground Level (m OD) 94.56

UA008926-43-02

Easting (OD) 611,750.5 Northing (OD) 135,820.1


08/09/2017

Test Date

Sheet 1 of 1

Depth & Purge Records:		Response Zone Details:	
Variable Head Test Type:	Falling Head	Installation Diameter (m):	0.05
Depth to Base of Borehole (m bgl):	9.95	Height of Installation above GL (m):	0.00
Depth to Pre Test Goundwater Level (m bgl):	3.47	Diameter of Borehole (m):	0.05
Time Taken to Purge (minutes):	0	Top of Test Section (m bgl):	2.00
Volume of Water Purged (Itrs):	0	Bottom of Test Section (m bgl):	9.95

Volume of Water Purged (Itrs):			0
Elapsed Time (minutes)	Depth to Water (m bgl)	Head (m)	Proportional Head (H _t /H _o)
0	0.00	9.95	1.00
0.1	0.05	9.90	0.99
0.2	0.42	9.53	0.88
0.2	0.42	9.53	0.88
0.4	0.46	9.49	0.87
0.5	0.51	9.44	0.85
0.6	0.63	9.32	0.82
0.7	0.74	9.21	0.79
0.9	0.95	9.01	0.73
0.9	0.95	9.01	0.73
1	1.01	8.94	0.71
1.3	1.26	8.69	0.64
1.5	1.38	8.57	0.60
1.6	1.43	8.52	0.59
1.8	1.59	8.36	0.54
2	1.71	8.24	0.51
2.5	1.92	8.03	0.45
3	2.05	7.90	0.41
3.5	2.15	7.80	0.38
4	2.23	7.72	0.36
4.5	2.30	7.65	0.34
5	2.36	7.59	0.32
5.5	2.40	7.55	0.31
I		1	

Calculated Parameters

1.96E-03 Cross Sectional Area of Response Zone: 1.00E-01 Time Lag (seconds): 223.2

NOTE: Ht/Ho = 0.37 has not been satisfied. Therefore data has been extrapolated from the last two readings to achive Ht/Ho = 0.37. Permeability is therefore approximate only.

Permeability (m/s)	1.01E-06

For the permeabilty test, 300 litres of water was added to the borehole.

Otterpool Park

Client

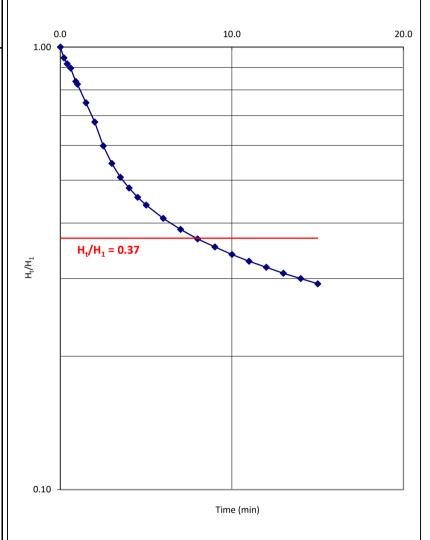
Shepway District Council

Project No. Ground Level (m OD) 94.56

UA008926-43-02

Easting (OD) Northing (OD) 611,750.5

135,820.1


08/09/2017

Test Date

Sheet 1 of 1

Depth & Purge Records:		Response Zone Details:	
Variable Head Test Type:	Falling Head	Installation Diameter (m):	0.05
Depth to Base of Borehole (m bgl):	9.95	Height of Installation above GL (m):	0.00
Depth to Pre Test Goundwater Level (m bgl):	3.47	Diameter of Borehole (m):	0.05
Time Taken to Purge (minutes):	0	Top of Test Section (m bgl):	2.00
Volume of Water Purged (Itrs):	0	Bottom of Test Section (m bgl):	9.95

Volume of Water Purged (Itrs):		0	
Elapsed Time (minutes)	Depth to Water (m bgl)	Head (m)	Proportional Head (H _t /H _o)
0	0.00	9.95	1.00
0.2	0.19	9.76	0.95
0.4	0.29	9.66	0.92
0.6	0.36	9.59	0.90
0.9	0.57	9.38	0.84
1	0.61	9.34	0.82
1.5	0.87	9.08	0.75
2	1.12	8.83	0.68
2.5	1.40	8.56	0.60
3	1.58	8.37	0.55
3.5	1.71	8.24	0.51
4	1.80	8.15	0.48
4.5	1.88	8.07	0.46
5	1.94	8.01	0.44
6	2.05	7.90	0.41
7	2.13	7.82	0.39
8	2.19	7.76	0.37
9	2.24	7.71	0.35
10	2.29	7.66	0.34
11	2.33	7.62	0.33
12	2.37	7.58	0.32
13	2.40	7.55	0.31
14	2.43	7.52	0.30

Calculated Parameters

Time Lag (seconds):

1.96E-03 Cross Sectional Area of Response Zone: 1.00E-01

475.2

NOTE: Ht/Ho = 0.37 has not been satisfied. Therefore data has been extrapolated from the last two readings to achive Ht/Ho = 0.37. Permeability is therefore approximate only.

Permeability (m/s)	4.77E-07
--------------------	----------

For the permeabilty test, 600 litres of water was added to the borehole.

Otterpool Park

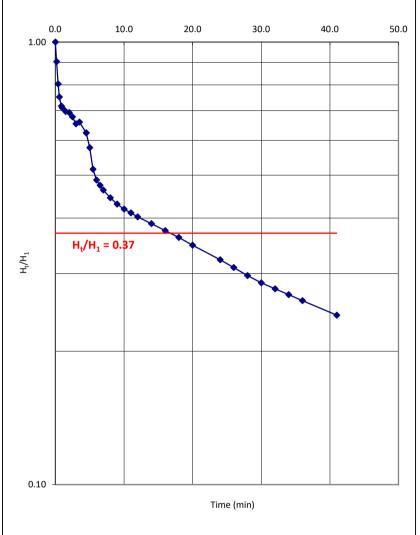
Client

Shepway District Council

Project No. Ground Level (m OD) 79.97

UA008926-43-02

Easting (OD) 613,555.5 Northing (OD) 136,952.2


08/09/2017

Test Date

Sheet 1 of 1

Depth & Purge Records:		Response Zone Details:	
Variable Head Test Type:	Falling Head	Installation Diameter (m):	0.05
Depth to Base of Borehole (m bgl):	10.00	Height of Installation above GL (m):	0.00
Depth to Pre Test Goundwater Level (m bgl):	3.69	Diameter of Borehole (m):	0.05
Time Taken to Purge (minutes):	0	Top of Test Section (m bgl):	2.00
Volume of Water Purged (Itrs):	0	Bottom of Test Section (m bgl):	10.00

Volume of Water Purged (ltrs):			0
Elapsed Time (minutes)	Depth to Water (m bgl)	Head (m)	Proportional Head (H _t /H _o)
0	0.00	10.00	1.00
0.2	0.36	9.64	0.90
0.4	0.72	9.28	0.80
0.6	0.92	9.09	0.75
0.9	1.04	8.96	0.72
1	1.07	8.93	0.71
1.5	1.12	8.88	0.70
2	1.13	8.87	0.69
2.5	1.19	8.81	0.68
3	1.28	8.72	0.65
3.5	1.25	8.75	0.66
4.5	1.39	8.61	0.62
4.5	1.39	8.61	0.62
5	1.56	8.44	0.58
5.5	1.78	8.22	0.52
6	1.89	8.11	0.49
6.5	1.94	8.06	0.47
7	1.98	8.02	0.46
8	2.05	7.96	0.45
9	2.10	7.90	0.43
10	2.14	7.86	0.42
11	2.17	7.83	0.41
12	2.20	7.80	0.40

Calculated Parameters

1.96E-03 Cross Sectional Area of Response Zone: 1.00E-01 Time Lag (seconds): 1004.4

NOTE: Ht/Ho = 0.37 has not been satisfied. Therefore data has been extrapolated from the last two readings to achive Ht/Ho = 0.37. Permeability is therefore approximate only.

Permeability (m/s)	2.24E-07
--------------------	----------

For the permeabilty test, 200 litres of water was added to the borehole.

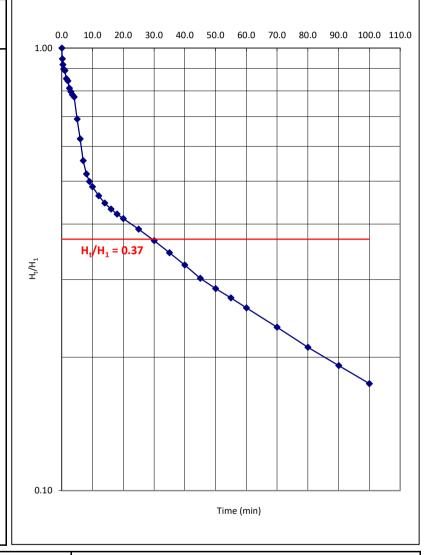
Otterpool Park

Client

Shepway District Council

Project No Ground Level (m OD) UA008926-43-02 79.97

Easting (OD) Northing (OD)


613,555.5 136,952.2 Test Date 08/09/2017

Sheet 1 of 1

Depth & Purge Records: Falling Head Variable Head Test Type: Depth to Base of Borehole (m bgl): 10.00 3.69 Depth to Pre Test Goundwater Level (m bgl): Time Taken to Purge (minutes): 0

Response Zone Details: 0.05 Installation Diameter (m): Height of Installation above GL (m): 0.00 0.05 Diameter of Borehole (m): Top of Test Section (m bgl): 2.00 10.00 Bottom of Test Section (m bgl):

Volume of Water Purged (ltrs):			0
Elapsed Time (minutes)	Depth to Water (m bgl)	Head (m)	Proportional Head (H _t /H _o)
0	0.00	10.00	1.00
0.2	0.20	9.80	0.95
0.4	0.30	9.70	0.92
0.6	0.38	9.62	0.90
0.9	0.40	9.60	0.89
1	0.41	9.59	0.89
1.5	0.54	9.46	0.85
2	0.58	9.42	0.84
2.5	0.69	9.31	0.81
3	0.75	9.25	0.80
3.5	0.79	9.21	0.78
4	0.83	9.17	0.78
5	1.14	8.86	0.69
6	1.39	8.61	0.62
7	1.63	8.37	0.56
8	1.77	8.23	0.52
9	1.85	8.16	0.50
10	1.89	8.11	0.49
12	1.98	8.02	0.46
14	2.04	7.96	0.45
16	2.09	7.91	0.43
18	2.13	7.87	0.42
20	2.17	7.83	0.41

Calculated Parameters

Cross Sectional Area of Response Zone: 1.96E-03 1.00E-01 Intake Factor: 1761 Time Lag (seconds):

NOTE: Ht/Ho = 0.37 has not been satisfied. Therefore data has been extrapolated from the last two readings to achive Ht/Ho = 0.37. Permeability is therefore approximate only.

Permeability (m/s)	1.28E-07
--------------------	----------

For the permeabilty test, 300 litres of water was added to the borehole.

Otterpool Park

Client

Shepway District Council

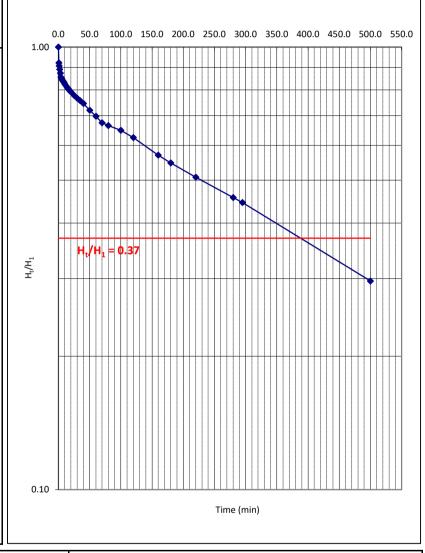
Project No. Ground Level (m OD) 99.93

UA008926-43-02

610,977.8

Easting (OD) Northing (OD)

136,085.2


08/09/2017

Test Date

Sheet 1 of 1

Depth & Purge Records:		Response Zone Details:	
Variable Head Test Type:	Falling Head	Installation Diameter (m):	0.05
Depth to Base of Borehole (m bgl):	3.50	Height of Installation above GL (m):	0.00
Depth to Pre Test Goundwater Level (m bgl):	3.41	Diameter of Borehole (m):	0.05
Time Taken to Purge (minutes):	0	Top of Test Section (m bgl):	1.00
Volume of Water Purged (Itrs):	0	Bottom of Test Section (m bgl):	3.50

Volume of W	ater Purged (Itr	Volume of Water Purged (ltrs): 0								
Elapsed Time (minutes)	Depth to Water (m bgl)	. Head (m)								
0	0.00	3.50	1.00							
0.5	0.27	3.23	0.92							
1	0.32	3.18	0.91							
2	0.38	3.13	0.89							
3	0.43	3.07	0.87							
4	0.49	3.01	0.86							
5	0.52	2.99	0.85							
6	0.53	2.97	0.84							
7	0.55	2.95	0.84							
8	0.56	2.94	0.83							
9	0.58	2.92	0.83							
10	0.59	2.91	0.83							
12	0.62	2.88	0.82							
14	0.65	2.85	0.81							
16	0.67	2.83	0.80							
18	0.69	2.81	0.80							
20	0.71	2.79	0.79							
25	0.76	2.74	0.78							
30	0.80	2.70	0.77							
35	0.83	2.67	0.76							
40	0.87	2.63	0.75							
50	0.96	2.55	0.72							
60	1.03	2.47	0.70							

Calculated Parameters

Cross Sectional Area of Response Zone: 1.96E-03 Intake Factor: 1.00E-01 23100 Time Lag (seconds):

NOTE: Ht/Ho = 0.37 has not been satisfied. Therefore data has been extrapolated from the last two readings to achive Ht/Ho = 0.37. Permeability is therefore approximate only.

Permeability (m/s)	2.49E-08
--------------------	----------

For the permeabilty test, ~20 litres of water was added to the borehole. V. Slow infiltration - results have been extrapolated.

APPENDIX F

GEOTECHNICAL LABORATORY TEST DATA

Contract Number: 36503

Client's Reference: UA008926 Report Date: 29-09-2017

Client Arcadis

Fortran Rd St Mellons Cardiff CF3 0EY

Contract Title: OtterPool Park
For the attention of: Ian Parsons

Date Received: **05-09-2017**Date Commenced: **05-09-2017**Date Completed: **29-09-2017**

Test Description	Qty
Moisture Content 1377 : 1990 Part 2 : 3.2 - * UKAS	32
4 Point Liquid & Plastic Limit (LL/PL) 1377: 1990 Part 2: 4.3 & 5.3 - * UKAS	17
PSD Wet Sieve method 1377 : 1990 Part 2 : 9.2 - * UKAS	16
PSD: Sedimentation by pipette carried out with Wet Sieve (Wet Sieve must also be selected) 1377: 1990 Part 2: 9.4 - * UKAS	6
(GI) BRE Suite Total Sulphate, Aqueous Sulphate, Total Sulphur, Aqueous Nitrate, Aqueous Mag, Chloride, 1377: 1990 Part 3 & BRE CP2/79 - @ Non Accredited Test	12
Dry Den/MC (2.5kg Rammer Method 1 Litre Mould) 1377: 1990 Part 4: 3.3 - * UKAS	6
Disposal of Samples on Project	1

Notes: Observations and Interpretations are outside the UKAS Accreditation

- * denotes test included in laboratory scope of accreditation
- # denotes test carried out by approved contractor
- @ denotes non accredited tests

This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

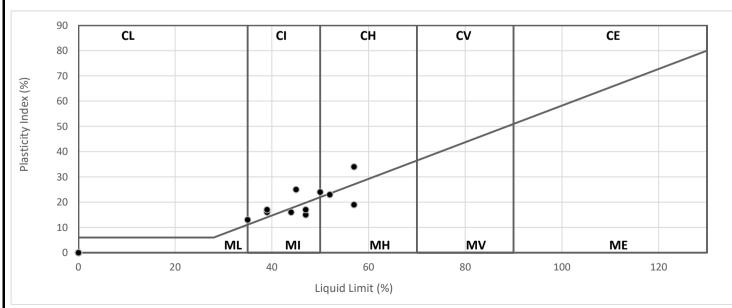
Approved Signatories:

Alex Wynn (Associate Director) - Ben Sharp (Contracts Manager) - Emma Sharp (Office Manager)
Paul Evans (Quality/Technical Manager) - Richard John (Advanced Testing Manager) - Sean Penn (Administrative Assistant)
Vaughan Edwards (Managing Director) - Wayne Honey (Administrative/Quality Assistant)

GSTL	LIQUID LIMIT, PLASTIC LIMIT AND PLASTICITY INDEX (BS 1377 : Part 2 : 1990 Method 5) DESCRIPTIONS	
Contract Number	36503	
Site Name	Otterpool Park	

Sample/Hole Reference	Sample Number	Sample Type	Depth (m)		m)	Descriptions
BH101	4	В	0.75	-	1.00	Brown fine to coarse gravelly sandy silty CLAY.
BH103	3	D	0.50	-		Brown slightly sandy clayey SILT.
BH103	7	D	1.00	-		Brown slightly sandy silty CLAY.
BH103	9	D	2.00	-		Brown slightly silty CLAY.
BH104	2	В	7.00	-	8.00	Grey/brown slightly sandy silty CLAY.
BH105	13	D	6.00	-		Grey/brown slightly sandy clayey SILT.
TP101	4	В	0.50	-		Brown slightly silty sandy CLAY.
TP102	7	В	1.10	-		Brown slightly slightly sandy CLAY.
TP102	1	D	1.80	-		Brown slightly silty slightly sandy CLAY.
TP103	10	В	1.50	-		Brown slightly fine to coarse gravelly silty clayey fine to coarse SAND.
TP104	7	В	1.00	-		Brown fine to coarse gravelly slightly sandy silty CLAY.
TP105	5	D	0.50	-		Brown slightly sandy clayey SILT.
TP105	7	В	1.00	-		Brown slightly sandy silty CLAY.
TP105	1	D	1.50	-		Brown silty CLAY.
TP106	10	В	1.50	-		Brown slightly silty slightly sandy CLAY.
TP106	2	В	2.00	-		Brown silty CLAY.
TP107	7	В	1.00	-		Brown silty clayey SAND.
TP107	10	В	1.60	-		Brown sandy silty CLAY.
TP108	5	D	0.60	-		Brown sandy silty CLAY.
TP110	8	D	1.00	-		Brown sandy silty CLAY.
TP110	1	D	1.80	-		Brown slightly silty slightly sandy fine to coarse gravelly CLAY.
TP111	10	В	1.60	-		Brown fine gravelly clayey SILT.
				-		
				-		

Operators	Checked	27-09-17	Ben Sharp (Contracts Manager)
Jordan Simmonite	Approved	27-09-17	Paul Evans (Quality/Technical Manager)


GSTL	LIQUID LIMIT, PLASTIC LIMIT AND PLASTICITY INDEX (BS 1377 : Part 2 : 1990 Method 5)	
Contract Number	36503	
Site Name	Otterpool Park	

Sample/Hole Reference	Sample Number	Sample Type	D	epth (r	m)	Moisture Content %	Liquid Limit %	Plastic Limit %	Plasticity index %	Passing .425mm %	Remarks
BH101	4	В	0.75	-	1.00	17	39	23	16	78	CI Intermediate Plasticity
BH103	3	D	0.50	-		17					
BH103	7	D	1.00	ı		20					
BH103	9	D	2.00			31					
BH104	2	В	7.00	-	8.00	31	52	29	23	100	MH High Plasticity
BH105	13	D	6.00	-		27	47	32	15	100	MI Intermediate Plasticity
TP101	4	В	0.50	-		21	50	26	24	98	CI/H Inter/High Plasticity
TP102	7	В	1.10	-		18	57	23	34	100	CH High Plasticity
TP102	1	D	1.80	-		24					
TP103	10	В	1.50	-		28	35	22	13	94	CL/I Low/Inter. Plasticity
TP104	7	В	1.00	-		21	39	22	17	78	CI Intermediate Plasticity
TP105	5	D	0.50			37	47	30	17	100	MI Intermediate Plasticity
TP105	7	В	1.00	-		29	45	20	25	100	CI Intermediate Plasticity
TP105	1	D	1.50	-		34					
TP106	10	В	1.50	-		27	44	28	16	100	MI Intermediate Plasticity
TP106	2	В	2.00	-		25					
TP107	7	В	1.00	-		26					
TP107	10	В	1.60	-		23					
TP108	5	D	0.60	-		18					
TP110	8	D	1.00	-		14					
TP110	1	D	1.80	-		16					
TP111	10	В	1.60	-		44	57	38	19	79	MH High Plasticity
				-							
				-							

Symbols: NP : Non Plastic # : Liquid Limit a

: Liquid Limit and Plastic Limit Wet Sieved

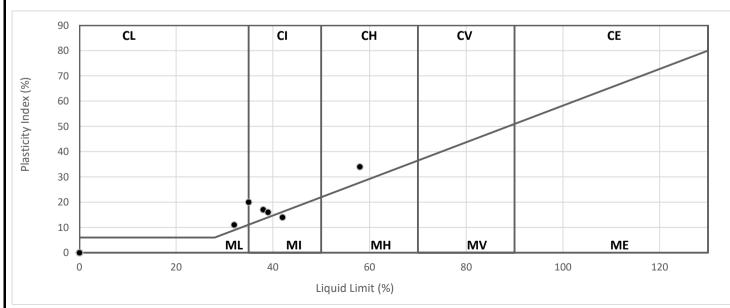
PLASTICITY CHART FOR CASAGRANDE CLASSIFICATION BS 5930:1999+A2:2010

Operators	Checked	27-09-17	Ben Sharp (Contracts Manager)
Jordan Simmonite	Approved	27-09-17	Paul Evans (Quality/Technical Manager)

GSTL	LIQUID LIMIT, PLASTIC LIMIT AND PLASTICITY INDEX (BS 1377 : Part 2 : 1990 Method 5) DESCRIPTIONS	
Contract Number	36503	
Site Name	Otterpool Park	

Sample/Hole Reference	Sample Number	Sample Type	Depth (m)		n)	Descriptions
TP113	5	D	0.60	-		Brown slightly silty slightly sandy CLAY.
TP113	10	В	1.40	-		Brown slightly silty slightly sandy CLAY.
TP113	7	D	2.50	-		Grey slightly silty fine to coarse gravelly CLAY.
WS104C	14	В	1.20	-	1.80	Brown slightly silty sandy fine to coarse gravelly CLAY.
WS106	10	В	1.40	-	2.00	Brown slightly silty CALY.
WS107	11	В	0.70	-	1.00	Brown slightly silty slightly sandy fine to coarse gravelly CLAY.
WS108	15	В	1.20	-	2.00	Brown slightly sandy silty CLAY.
WS110	16	В	0.70	-	1.00	Brown fine to coarse gravelly sandy silty CLAY.
WS110	8	D	1.80	-	2.00	Brown slightly silty slightly sandy CLAY.
WS110	9	D	2.10	-	2.20	Brown slightly sandy silty CLAY.
				-		
				-		
				-		
				-		
				-		
				-		
				-		
				-		
				-		
				-		
				-		
				-		
				-		
				-		

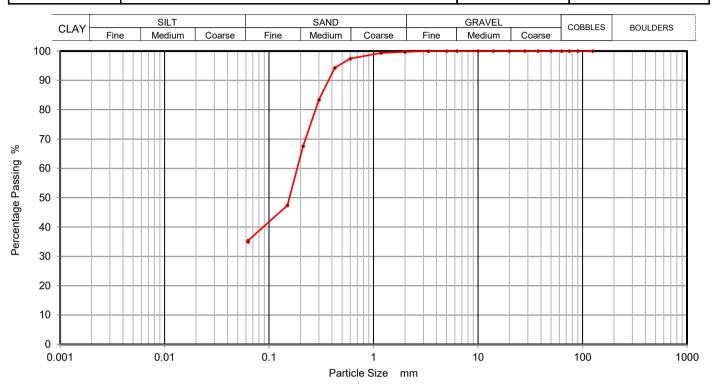
Operators	Checked	27-09-17	Ben Sharp (Contracts Manager)
Jordan Simmonite	Approved	27-09-17	Paul Evans (Quality/Technical Manager)


GSTL	LIQUID LIMIT, PLASTIC LIMIT AND PLASTICITY INDEX (BS 1377 : Part 2 : 1990 Method 5)	
Contract Number	36503	
Site Name	Otterpool Park	

Sample/Hole Reference	Sample Number	Sample Type	D	epth (r	m)	Moisture Content %	Liquid Limit %	Plastic Limit %	Plasticity index %	Passing .425mm %	Remarks
TP113	5	D	0.60	-		14					
TP113	10	В	1.40	-		31	42	28	14	100	MI Intermediate Plasticity
TP113	7	D	2.50	-		26					
WS104C	14	В	1.20	-	1.80	22	35	15	20	76	CL/I Low/Inter. Plasticity
WS106	10	В	1.40	-	2.00	20	38	21	17	100	CI Intermediate Plasticity
WS107	11	В	0.70	-	1.00	16	32	21	11	84	CL Low Plasticity
WS108	15	В	1.20	-	2.00	34	58	24	34	96	CH High Plasticity
WS110	16	В	0.70	-	1.00	17	39	23	16	74	CI Intermediate Plasticity
WS110	8	D	1.80	-	2.00	28					
WS110	9	D	2.10	-	2.20	21					
				-							
				•							
				-							
				-							
				•							
				-							
				-							
				•							
				-							
				-							
	_			-							_
				-							
				-							
				-							_

Symbols: NP : Non Plastic

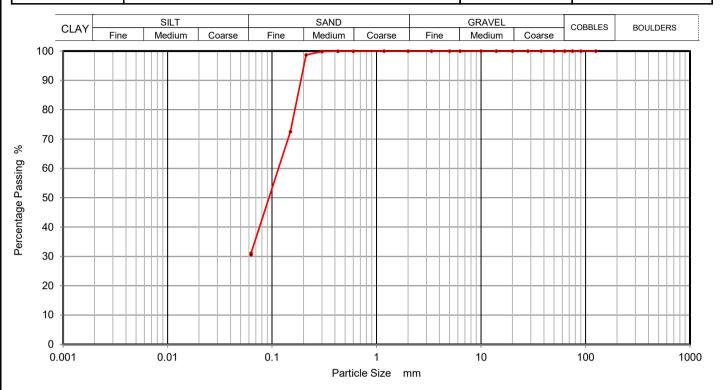
: Liquid Limit and Plastic Limit Wet Sieved


PLASTICITY CHART FOR CASAGRANDE CLASSIFICATION BS 5930:1999+A2:2010

Operators	Checked	27-09-17	Ben Sharp (Contracts Manager)
Jordan Simmonite	Approved	27-09-17	Paul Evans (Quality/Technical Manager)

CCTI	PARTICLE SIZE DISTRIBUTION	Contract Number	36503
GOIL	BS 1377 Part 2:1990 Wet Sieve, Clause 9.2	Borehole/Pit No.	BH102
Site Name	Otterpool Park	Sample No.	8
Soil Description	Provinciality alayou fine to engree SAND	Depth Top	2.00
	Brown silty clayey fine to coarse SAND.	Depth Base	3.00
		Sample Type	В

Siev	ving	Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100	0.0200	
90	100	0.0060	
75	100	0.0019	
63	100	0.0010	
50	100		
37.5	100		
28	100		
20	100		
14	100		
10	100		
6.3	100		
5	100		
3.35	100		
2	100		
1.18	99		
0.6	97		
0.425	94		
0.3	83		
0.212	68		
0.15	47		
0.063	35		

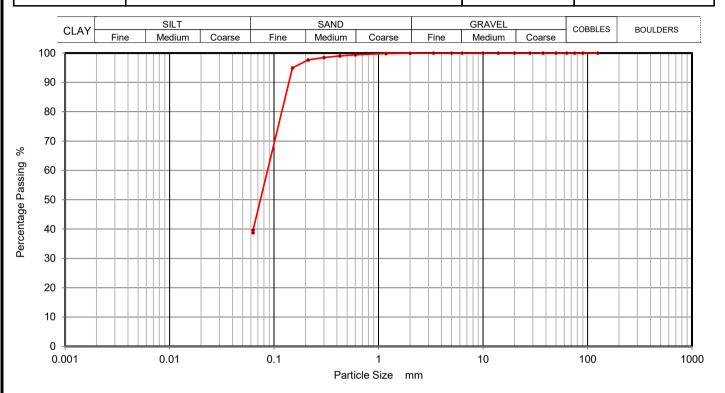

Sample Proportions	% dry mass
Cobbles	0
Gravel	0
Sand	65
Silt and Clay	35

Grading Analysis	
Uniformity Coefficient	

Operators	Checked	26-09-17	Ben Sharp	25
RO/MH	Approved	27-09-17	Paul Evans	EP Grons

CCTI	PARTICLE SIZE DISTRIBUTION		36503
GOIL	BS 1377 Part 2:1990 Wet Sieve, Clause 9.2	Borehole/Pit No.	BH104
Site Name	Otterpool Park	Sample No.	1
Soil Description	Brown silty clayey fine to medium SAND.	Depth Top	4.00
	Brown silty dayey line to medium SAND.	Depth Base	5.00
		Sample Type	В

Siev	Sieving		entation
Particle Size	% Passing	Particle Size	% Passing
mm	70 T assiring	mm	70 T assirig
125	100	0.0200	
90	100	0.0060	
75	100	0.0019	
63	100		
50	100		
37.5	100		
28	100		
20	100		
14	100		
10	100		
6.3	100		
5	100		
3.35	100		
2	100		
1.18	100		
0.6	100		
0.425	100		
0.3	100		
0.212	99		
0.15	73		
0.063	31		

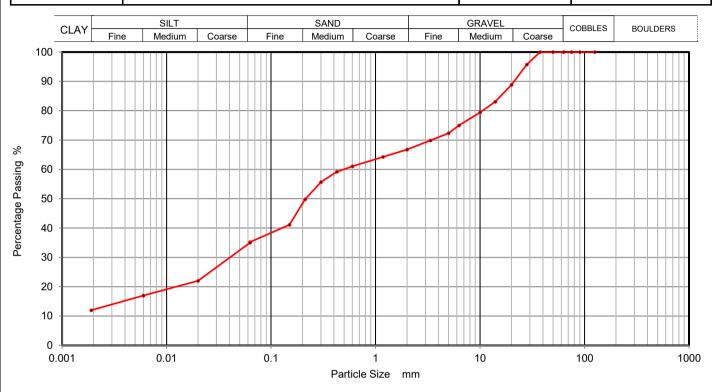

Sample Proportions	% dry mass	
Cobbles	0	
Gravel	0	
Sand	69	
Silt and Clay	31	

Grading Analysis	
Uniformity Coefficient	

Operators	Checked	26-09-17	Ben Sharp	25
RO/MH	Approved	27-09-17	Paul Evans	SP Rons

PARTICLE SIZE DISTRIBUTION		Contract Number	36503
GOIL	BS 1377 Part 2:1990 Wet Sieve, Clause 9.2	Borehole/Pit No.	BH105
Site Name	Otterpool Park	Sample No.	12
Soil Description	Grey silty clayey fine to coarse SAND.	Depth Top	5.00
	Grey silty clayey line to coarse SAND.	Depth Base	
		Sample Type	D

Siev	ving	Sedimentation	
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100	0.0200	
90	100	0.0060	
75	100	0.0019	
63	100		
50	100		
37.5	100		
28	100		
20	100		
14	100		
10	100		
6.3	100		
5	100		
3.35	100		
2	100		
1.18	100		
0.6	99		
0.425	99		
0.3	98		
0.212	98		
0.15	95		
0.063	40		

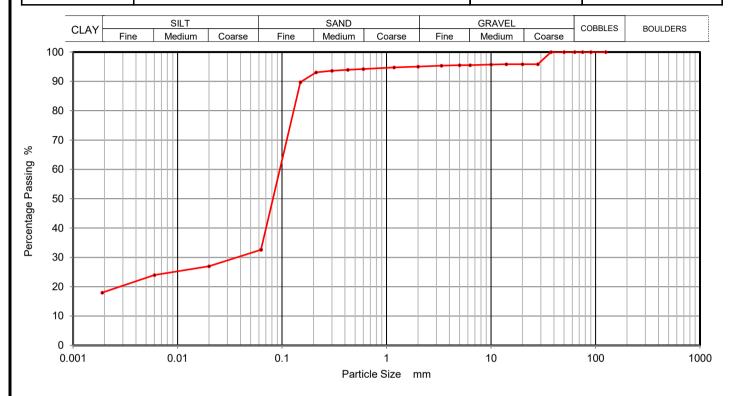

Sample Proportions	% dry mass
Cobbles	0
Gravel	0
Sand	60
Silt and Clay	40

Grading Analysis	
Uniformity Coefficient	

Operators	Checked	26-09-17	Ben Sharp	25
RO/MH	Approved	27-09-17	Paul Evans	EP Grons

CCTI	PARTICLE SIZE DISTRIBUTION	Contract Number	36503
GOIL	BS 1377 Part 2:1990 Wet Sieve & Pipette Analysis, Clause 9.2 & 9.4	Borehole/Pit No.	TP101
Site Name	Otterpool Park	Sample No.	10
Soil Description	Brown clayey silty fine to coarse sandy fine to coarse GRAVEL.	Depth Top	1.50
	brown dayey silly line to coarse sandy line to coarse GRAVEL.	Depth Base	
		Sample Type	В

Siev	ving	Sedimentation	
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100	0.0200	22
90	100	0.0060	17
75	100	0.0019	12
63	100		
50	100		
37.5	100		
28	96		
20	89		
14	83		
10	79		
6.3	75		
5	72		
3.35	70		
2	67		
1.18	64		
0.6	61		
0.425	59		
0.3	56		
0.212	50		
0.15	41		
0.063	35		

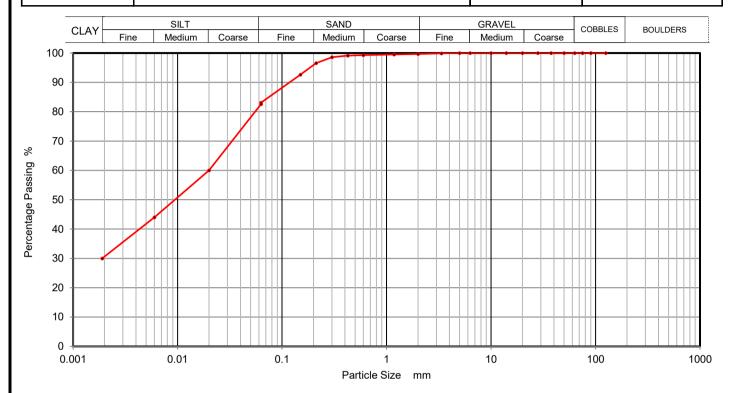

Sample Proportions	% dry mass	
Cobbles	0	
Gravel	33	
Sand	32	
Silt	23	
Clay	12	

Grading Analysis	
Uniformity Coefficient	

Operators	Checked	26-09-17	Ben Sharp	25
RO/MH	Approved	27-09-17	Paul Evans	SP F Grons

CCTI	PARTICLE SIZE DISTRIBUTION	Contract Number	36503
GOIL	BS 1377 Part 2:1990 Wet Sieve & Pipette Analysis, Clause 9.2 & 9.4	Borehole/Pit No.	TP103
Site Name	Otterpool Park	Sample No.	10
Soil Description	Brown slightly fine to coarse gravelly silty clayey fine to coarse SAND.	Depth Top	1.50
	Brown slightly line to coarse gravelly slity dayey line to coarse SAND.	Depth Base	
		Sample Type	В

Sieving		Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100	0.0200	27
90	100	0.0060	24
75	100	0.0019	18
63	100		
50	100		
37.5	100		
28	96		
20	96		
14	96		
10	96		
6.3	96		
5	96		
3.35	95		
2	95		
1.18	95		
0.6	94		
0.425	94		
0.3	94		
0.212	93		
0.15	90		
0.063	33		

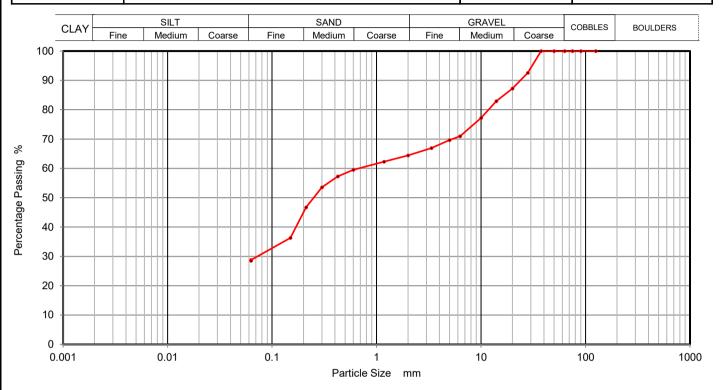

Sample Proportions	% dry mass	
Cobbles	0	
Gravel	5	
Sand	62	
Silt	15	
Clay	18	

Grading Analysis	
Uniformity Coefficient	

Operators	Checked	26-09-17	Ben Sharp	25
RO/MH	Approved	27-09-17	Paul Evans	EP Grans

CCTI	PARTICLE SIZE DISTRIBUTION	Contract Number	36503
GOIL	BS 1377 Part 2:1990 Wet Sieve & Pipette Analysis, Clause 9.2 & 9.4	Borehole/Pit No.	TP104
Site Name	Otterpool Park	Sample No.	10
Soil Description	D	Depth Top	1.50
	Brown fine to coarse sandy clayey SILT.	Depth Base	
		Sample Type	В

Siev	Sieving		entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100	0.0200	60
90	100	0.0060	44
75	100	0.0019	30
63	100		
50	100		
37.5	100		
28	100		
20	100		
14	100		
10	100		
6.3	100		
5	100		
3.35	100		
2	100		
1.18	100		
0.6	99		
0.425	99		
0.3	99		
0.212	97		
0.15	93		
0.063	83		


Sample Proportions	% dry mass	
Cobbles	0	
Gravel	0	
Sand	17	
Silt	53	
Clay	30	

Grading Analysis	
Uniformity Coefficient	

Operators	Checked	26-09-17	Ben Sharp	25
RO/MH	Approved	27-09-17	Paul Evans	SP Gons

CCTI	PARTICLE SIZE DISTRIBUTION	Contract Number	36503
GOIL	BS 1377 Part 2:1990 Wet Sieve, Clause 9.2	Borehole/Pit No.	TP105
Site Name	Otterpool Park	Sample No.	4
Soil Description		Depth Top	2.20
	Brown silty clayey fine to coarse sandy fine to coarse GRAVEL.	Depth Base	
		Sample Type	В

Siev	Sieving		entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100	0.0200	
90	100	0.0060	
75	100	0.0019	
63	100		
50	100		
37.5	100		
28	93		
20	87		
14	83		
10	77		
6.3	71		
5	70		
3.35	67		
2	64		
1.18	62		
0.6	59		
0.425	57		
0.3	54		
0.212	47		
0.15	36		
0.063	29		

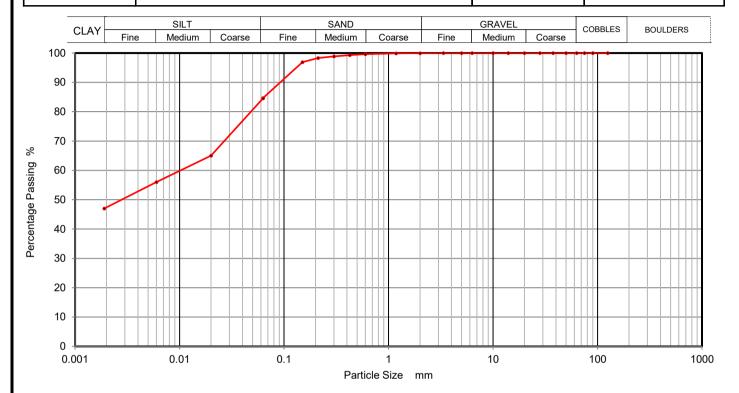
Sample Proportions	% dry mass
Cobbles	0
Gravel	36
Sand	35
Silt and Clay	29

Grading Analysis	
Uniformity Coefficient	

Operators	Checked	26-09-17	Ben Sharp	25
RO/MH	Approved	27-09-17	Paul Evans	EP Grans

CCTI	PARTICLE SIZE DISTRIBUTION	Contract Number	36503
GOIL	BS 1377 Part 2:1990 Wet Sieve, Clause 9.2	Borehole/Pit No.	TP108
Site Name	Otterpool Park	Sample No.	1
Soil Description	Provin fine to cooree condu SII T/CLAV	Depth Top	1.50
	Brown fine to coarse sandy SILT/CLAY.	Depth Base	
		Sample Type	D

Sieving		Sedime	entation
Particle Size	% Passing	Particle Size	% Passing
mm	70 Fassing	mm	70 Fassing
125	100	0.0200	
90	100	0.0060	
75	100	0.0019	
63	100		
50	100		
37.5	100		
28	100		
20	100		
14	100		
10	100		
6.3	100		
5	100		
3.35	100		
2	100		
1.18	99		
0.6	99		
0.425	98		
0.3	95		_
0.212	92		
0.15	79		
0.063	68		

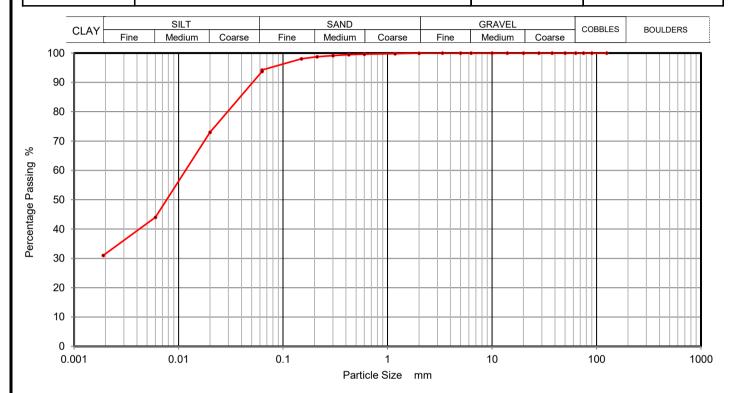

Sample Proportions	% dry mass
Cobbles	0
Gravel	0
Sand	32
Silt and Clay	68

Grading Analysis	
Uniformity Coefficient	

Operators	Checked	26-09-17	Ben Sharp	25
RO/MH	Approved	27-09-17	Paul Evans	SP Gons

CCTI	PARTICLE SIZE DISTRIBUTION	Contract Number	36503
GOIL	BS 1377 Part 2:1990 Wet Sieve & Pipette Analysis, Clause 9.2 & 9.4		TP109
Site Name	Otterpool Park	Sample No.	7
Soil Description	Drawn fine to madium conducity CLAV	Depth Top	1.20
	Brown fine to medium sandy silty CLAY.	Depth Base	
		Sample Type	В

Sieving		Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100	0.0200	65
90	100	0.0060	56
75	100	0.0019	47
63	100		
50	100		
37.5	100		
28	100		
20	100		
14	100		
10	100		
6.3	100		
5	100		
3.35	100		
2	100		
1.18	100		
0.6	100		
0.425	99		
0.3	99		
0.212	98		
0.15	97		
0.063	85		

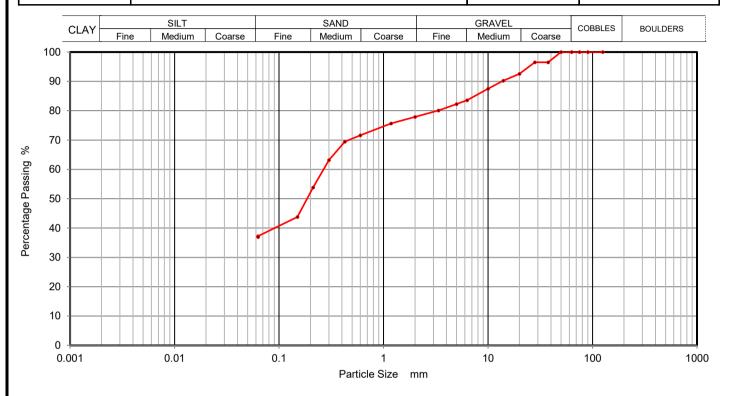

Sample Proportions	% dry mass
Cobbles	0
Gravel	0
Sand	15
Silt	38
Clay	47

Grading Analysis	
Uniformity Coefficient	

Operators	Checked	26-09-17	Ben Sharp	25
RO/MH	Approved	27-09-17	Paul Evans	SP Rons

CCTI	PARTICLE SIZE DISTRIBUTION BS 1377 Part 2:1990 Wet Sieve & Pipette Analysis, Clause 9.2 & 9.4		36503
GOIL			TP110
Site Name	Otterpool Park	Sample No.	7
Soil Description	Brown slightly fine to medium sandy clayey SILT.	Depth Top	1.00
	brown siightiy iine to medium sahuy dayey SiE1.	Depth Base	
		Sample Type	В

Sieving		Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100	0.0200	73
90	100	0.0060	44
75	100	0.0019	31
63	100		
50	100		
37.5	100		
28	100		
20	100		
14	100		
10	100		
6.3	100		
5	100		
3.35	100		
2	100		
1.18	100		
0.6	100		
0.425	99		
0.3	99		
0.212	99		
0.15	98		
0.063	94		

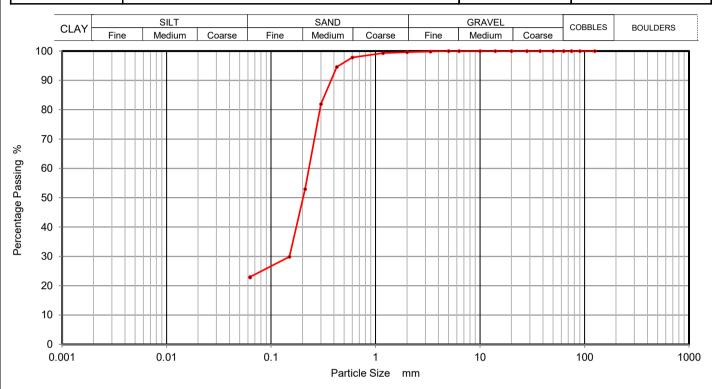

Sample Proportions	% dry mass	
Cobbles	0	
Gravel	0	
Sand	6	
Silt	63	
Clay	31	

Grading Analysis	
Uniformity Coefficient	

Operators	Checked	26-09-17	Ben Sharp	25
RO/MH	Approved	27-09-17	Paul Evans	SP Gons

CCTI	PARTICLE SIZE DISTRIBUTION BS 1377 Part 2:1990 Wet Sieve, Clause 9.2		36503
GOIL			TP112
Site Name	Otterpool Park	Sample No.	7
Soil Description	Brown fine to coarse gravelly silty clayey fine to coarse SAND.	Depth Top	1.00
	Brown line to coarse gravelly slity clayery line to coarse SAND.	Depth Base	
		Sample Type	В

Sieving		Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100	0.0200	
90	100	0.0060	
75	100	0.0019	
63	100		
50	100		
37.5	97		
28	97		
20	93		
14	90		
10	87		
6.3	84		
5	82		
3.35	80		
2	78		
1.18	76		
0.6	72		
0.425	69		
0.3	63		
0.212	54		
0.15	44		
0.063	37		

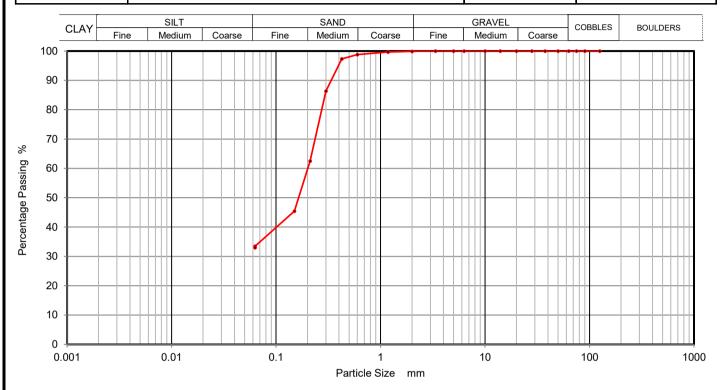

Sample Proportions	% dry mass
Cobbles	0
Gravel	22
Sand	41
Silt and Clay	37

Grading Analysis	
Uniformity Coefficient	

Operators	Checked	26-09-17	Ben Sharp	25
RO/MH	Approved	27-09-17	Paul Evans	EDP Grons

PARTICLE SIZE DISTRIBUTION BS 1377 Part 2:1990	PARTICLE SIZE DISTRIBUTION	Contract Number	36503
	Borehole/Pit No.	WS101	
Site Name	Otterpool Park	Sample No.	13
Soil Description		Depth Top	2.00
	Brown silty clayey fine to coarse SAND.	Depth Base	2.80
		Sample Type	В

Sieving		Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100	0.0200	
90	100	0.0060	
75	100	0.0019	
63	100		
50	100		
37.5	100		
28	100		
20	100		
14	100		
10	100		
6.3	100		
5	100		
3.35	100		
2	100		
1.18	99		
0.6	98		
0.425	95		
0.3	82		
0.212	53		
0.15	30		
0.063	23		

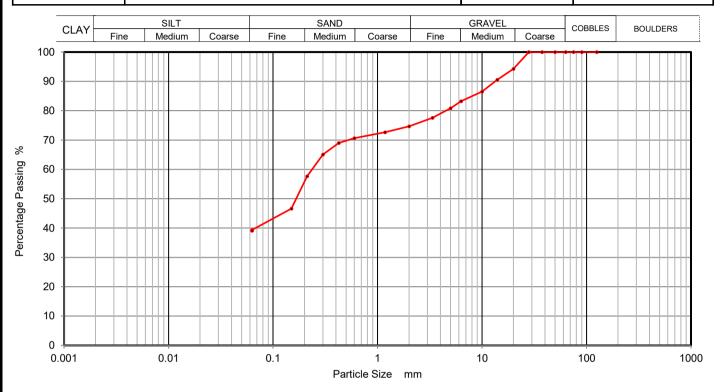

Sample Proportions	% dry mass
Cobbles	0
Gravel	0
Sand	77
Silt and Clay	23

Grading Analysis	
Uniformity Coefficient	

Operators	Checked	26-09-17	Ben Sharp	25
RO/MH	Approved	27-09-17	Paul Evans	SIP Grans

CCTI	PARTICLE SIZE DISTRIBUTION BS 1377 Part 2:1990 Wet Sieve, Clause 9.2		36503
GOIL			WS103
Site Name	Otterpool Park	Sample No.	16
Soil Description	Brown silty clayey fine to coarse SAND.	Depth Top	2.00
	Brown sirty diayey line to coarse SAND.	Depth Base	2.80
		Sample Type	В

Sieving		Sedime	entation
Particle Size	% Passing	Particle Size	% Passing
mm	70 1 decing	mm	70 : deemig
125	100	0.0200	
90	100	0.0060	
75	100	0.0019	
63	100		
50	100		
37.5	100		
28	100		
20	100		
14	100		
10	100		
6.3	100		
5	100		
3.35	100		
2	100		
1.18	100		
0.6	99		
0.425	97		
0.3	86		
0.212	63		
0.15	45		
0.063	33		

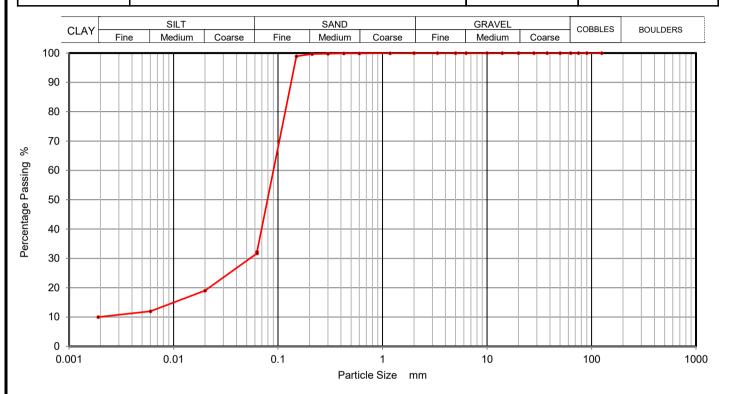

Sample Proportions	% dry mass
Cobbles	0
Gravel	0
Sand	67
Silt and Clay	33

Grading Analysis	
Uniformity Coefficient	

Operators	Checked	26-09-17	Ben Sharp	25
RO/MH	Approved	27-09-17	Paul Evans	EP Grons

CCTI	PARTICLE SIZE DISTRIBUTION		36503	
BS 1377 Part 2:1990 Wet Sieve, Clause 9.2		GOIL	Borehole/Pit No.	WS104C
Site Name	Otterpool Park	Sample No.	16	
Soil Description	Brown fine to coarse gravelly fine to coarse sandy SILT/CLAY.	Depth Top	3.00	
	Brown line to coarse gravelly line to coarse sarity SIL 17CLA1.	Depth Base	3.90	
		Sample Type	В	

Sieving		Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100	0.0200	
90	100	0.0060	
75	100	0.0019	
63	100		
50	100		
37.5	100		
28	100		
20	94		
14	91		
10	87		
6.3	83		
5	81		
3.35	78		
2	75		
1.18	73		
0.6	71		
0.425	69		
0.3	65		
0.212	58		
0.15	47		
0.063	39		

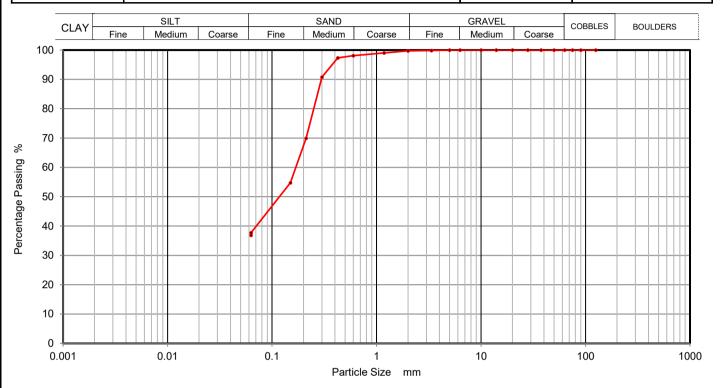

Sample Proportions	% dry mass
Cobbles	0
Gravel	25
Sand	36
Silt and Clay	39

Grading Analysis	
Uniformity Coefficient	

Operators	Checked	26-09-17	Ben Sharp	25
RO/MH	Approved	27-09-17	Paul Evans	EP GONS

CCTI	PARTICLE SIZE DISTRIBUTION	Contract Number	36503
GOIL	BS 1377 Part 2:1990 Wet Sieve & Pipette Analysis, Clause 9.2 & 9.4	Borehole/Pit No.	WS105
Site Name	Otterpool Park	Sample No.	12
Soil Description	· · · · · · · · · · · · · · · · · · ·	Depth Top	2.00
	Brown silty clayey fine SAND.		2.25
		Sample Type	В

Sieving		Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100	0.0200	19
90	100	0.0060	12
75	100	0.0019	10
63	100		
50	100		
37.5	100		
28	100		
20	100		
14	100		
10	100		
6.3	100		
5	100		
3.35	100		
2	100		
1.18	100		
0.6	100		•
0.425	100		
0.3	100		
0.212	100		
0.15	99		
0.063	32		


Sample Proportions	% dry mass
Cobbles	0
Gravel	0
Sand	68
Silt	22
Clay	10

Grading Analysis	
Uniformity Coefficient	

Operators	Checked	26-09-17	Ben Sharp	25
RO/MH	Approved	27-09-17	Paul Evans	SP Rons

CCTI	PARTICLE SIZE DISTRIBUTION	Contract Number	36503
GOIL	BS 1377 Part 2:1990 Wet Sieve, Clause 9.2	Borehole/Pit No.	WS112
Site Name			14
Soil Description	Proug cilty playey fine to page SAND	Depth Top	2.20
	Brown silty clayey fine to coarse SAND.	Depth Base	2.70
		Sample Type	В

Siev	Sieving		entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100	0.0200	
90	100	0.0060	
75	100	0.0019	
63	100		
50	100		
37.5	100		
28	100		
20	100		
14	100		
10	100		
6.3	100		
5	100		
3.35	100		
2	100		
1.18	99		
0.6	98		
0.425	97		
0.3	91		
0.212	70		
0.15	55		
0.063	38		

Sample Proportions	% dry mass
Cobbles	0
Gravel	0
Sand	62
Silt and Clay	38

Grading Analysis	
Uniformity Coefficient	

Operators	Checked	26-09-17	Ben Sharp	25
RO/MH	Approved	27-09-17	Paul Evans	EP Grons

CCTI	Certificate of Chemical Analysis	Contract Number	36503
GOIL	(BRE BR 279)	Client Reference	UA008926
Client	Arcadis	Date Received	21-09-17
Site Name	Otterpool Park	Date Started	
		Date Completed	27-09-17
		No. of Samples	11

Hole Number	Sample Number	Sample Type	D	epth (m)	Acid Soluble Sulphate	Aqueous Extract Sulphate	Chloride Content	Ph Value	Total Sulphur	Magnesium	Nitrate
BH101	4	В	0.75	-	1.00	0.33	0.15	NCP	6.78	0.12	<1	<10
BH104	2	В	7.00	-	8.00	0.29	0.03	NCP	6.92	0.11	<1	10-25
				-								
TP102	7	В	1.10	-		0.29	0.04	NCP	6.39	0.10	<1	<10
TP103	3	D	1.50	-		0.25	0.08	NCP	6.16	0.10	<1	<10
TP104	8	D	1.00	-		0.25	0.03	NCP	6.84	0.09	<1	10-25
TP110	7	В	1.00	-		0.21	0.03	NCP	6.56	0.09	<1	10-25
TP113	10	В	1.40	-		0.23	0.03	NCP	6.89	0.09	<1	<10
WS103	16	В	2.00	-	2.80	0.21	0.02	NCP	5.89	0.08	<1	<10
WS107	7	В	0.70	-	1.00	0.23	0.07	NCP	6.60	0.08	<1	<10
WS109	8	В	1.20	-	1.80	0.25	0.03	NCP	6.24	0.09	<1	<10
				-								
				-								
				-								
				-								
				-								
				-								
				-								
				-								
				-								
				-								
				-								
				-								
				-								
				-								
				-								
				-								
				-								
				-								
				-								

Key Reported As Acid Soluble Sulphate % SO₄ Aqueous Extract Sulphate g/I SO₄ mg CI/I Chloride Content (Semi) PH Value @ 25° % S Total Sulphur Magnesium g/I SO₄ Nitrate NO₃ mg/l

Remarks

NCP = No Chloride Present

Test Operator	Checked and Authorised by				
Neil Edwards	Date	27-09-17			

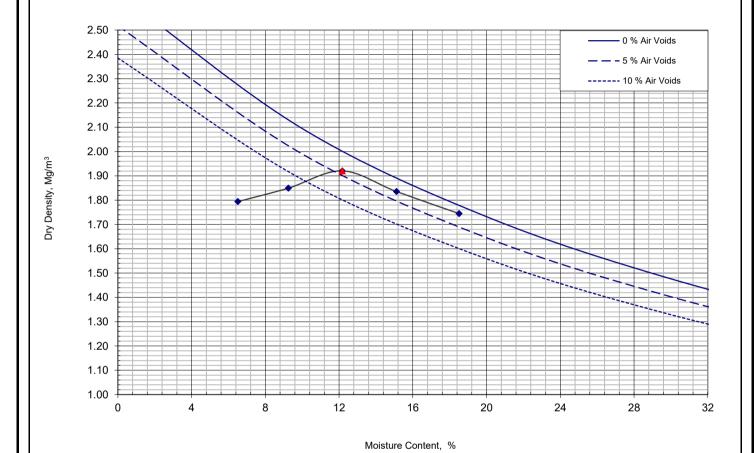
Ben Sharp

CCTI	Certificate of Chemical Analysis	Contract Number	36503
GSIL	(BRE BR 279)	Client Reference	UA008926
Client	Arcadis	Date Received	
Site Name	Otterpool Park	Date Started	
		Date Completed	29-09-17
		No. of Samples	2

Hole Number	Sample Number	Sample Type	D	epth (m)	Acid Soluble Sulphate	Aqueous Extract Sulphate	Chloride Content	Ph Value	Total Sulphur	Magnesium	Nitrate
TP108	5	D	0.60	-		0.25	0.03	NCP	6.71	0.09	<1	<10
TP111	10	В	1.60	-		0.23	0.02	NCP	6.82	0.09	<1	<10
				-								
				-								
				-								
				-								
				-								
				-								
				-								
				-								
				-								
				-								
				_								
				-								
				-								
				-								
				-								
				-								
				_								
				-								
				-								
				-								
				-								
				-								
				-								
				-								
				-								
				-								
				-								
				-								

Key Reported As Acid Soluble Sulphate % SO₄ Aqueous Extract Sulphate g/I SO₄ mg CI/I Chloride Content (Semi) PH Value @ 25° % S Total Sulphur Magnesium g/I SO₄ Nitrate NO₃ mg/l

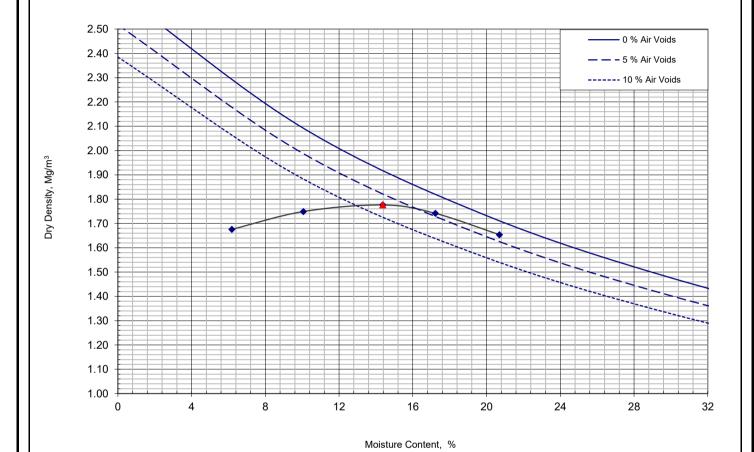
Remarks


NCP = No Chloride Present

Test Operator	Checked and Authorised by					
Darren Bourne	Date	29-09-17				

Ben Sharp

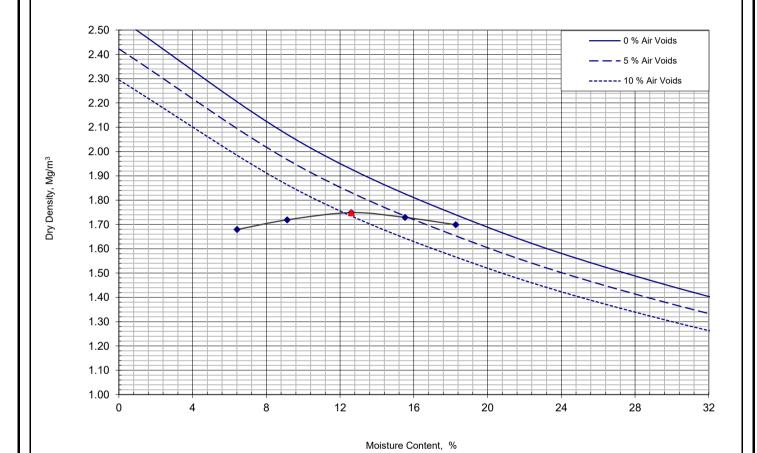
CCTI	Dry Density / Moisture Content Relationship	Contract Number	36503
GSIL	BS 1377:Part 4:1990	Borehole / Pit No	TP101
Site Name	Otterpool Park	Sample No	4
		Depth Top	0.50
Compaction Method	2.5 Kg Rammer	Depth Base	
Compaction Clause	BS1377:Part 4:1990, Clause 3.4	Sample Type	В


Compaction Point	1	2	3	4	5				
Moisture Content	6.5	9.3	12	15	19				
Bulk Density	1.91	2.02	2.15	2.11	2.07				
Dry Density	1.79	1.85	1.92	1.84	1.74				

Initial Moisture Content	19	%
Maximum Dry Density	1.92	Mg/m3
Optimum Moisture Content	12	%
Paricle Density	2.65 Assumed	Mg/m3
Material Retianed 37.5mm	0	%
Material Retianed 20mm	0	%

Operators	Checked	28-09-17	Ben Sharp	
CA	Approved	29-09-17	Paul Evans	EP Flows

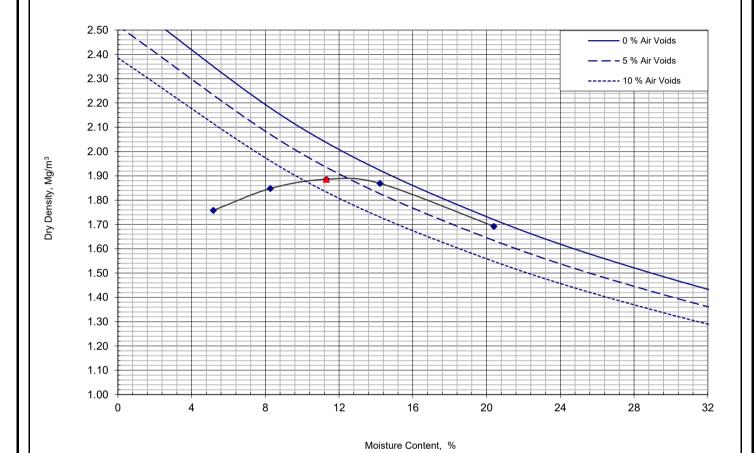
CCTI	Dry Density / Moisture Content Relationship	Contract Number	36503
GSIL	BS 1377:Part 4:1990	Borehole / Pit No	TP104
Site Name	Otterpool Park	Sample No	2
		Depth Top	2.20
Compaction Method	2.5 Kg Rammer	Depth Base	
Compaction Clause	BS1377:Part 4:1990, Clause 3.4	Sample Type	В


Compaction Point	1	2	3	4	5				
Moisture Content	6.2	10	14	17	21				
Bulk Density	1.78	1.93	2.03	2.04	2.00				
Dry Density	1.68	1.75	1.78	1.74	1.65				

Initial Moisture Content	21	%
Maximum Dry Density	1.78	Mg/m3
Optimum Moisture Content	14	%
Paricle Density	2.65 Assumed	Mg/m3
Material Retianed 37.5mm	0	%
Material Retianed 20mm	0	%

Operators	Checked	28-09-17	Ben Sharp	
CA	Approved	29-09-17	Paul Evans	EP Flows

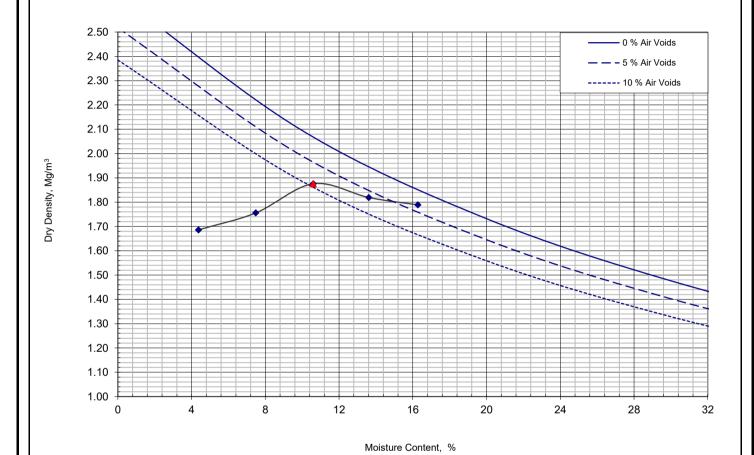
CCTI	Dry Density / Moisture Content Relationship	Contract Number	36503
GSIL	BS 1377:Part 4:1990	Borehole / Pit No	TP106
Site Name	Otterpool Park	Sample No	2
		Depth Top	2.00
Compaction Method	2.5 Kg Rammer	Depth Base	
Compaction Clause	BS1377:Part 4:1990, Clause 3.4	Sample Type	В


Compaction Point	1	2	3	4	5				
Moisture Content	6.4	9.1	13	16	18				
Bulk Density	1.79	1.88	1.97	2.00	2.01				
Dry Density	1.68	1.72	1.75	1.73	1.70				

Initial Moisture Content	13	%
Maximum Dry Density	1.75	Mg/m3
Optimum Moisture Content	13	%
Paricle Density	2.55 Assumed	Mg/m3
Material Retianed 37.5mm	19	%
Material Retianed 20mm	32	%

Operators	Checked	26-09-17	Ben Sharp	
CA	Approved	27-09-17	Paul Evans	SP Glons

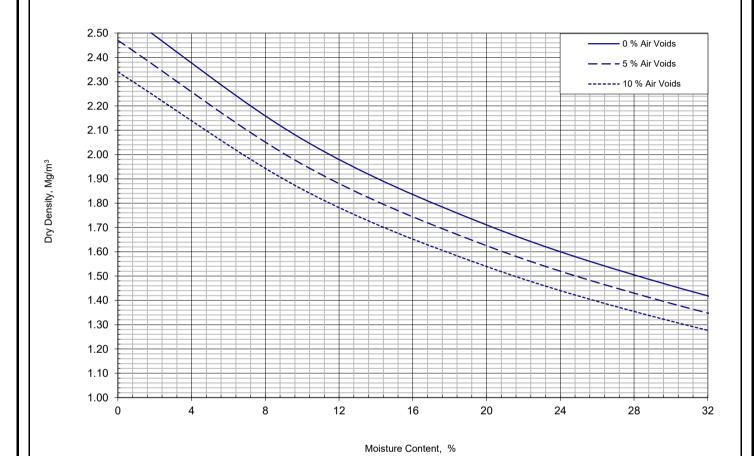
CCTI	Dry Density / Moisture Content Relationship	Contract Number	36503
GSIL	BS 1377:Part 4:1990	Borehole / Pit No	TP109
Site Name	Otterpool Park	Sample No	7
		Depth Top	1.20
Compaction Method	2.5 Kg Rammer	Depth Base	
Compaction Clause	BS1377:Part 4:1990, Clause 3.4	Sample Type	В


Compaction Point	1	2	3	4	5				
Moisture Content	5.2	8.3	11	14	20				
Bulk Density	1.85	2.00	2.10	2.13	2.04				
Dry Density	1.76	1.85	1.89	1.87	1.69				

Initial Moisture Content	20	%
Maximum Dry Density	1.89	Mg/m3
Optimum Moisture Content	11	%
Particle Density	2.65 Assumed	Mg/m3
Material Retained 37.5mm	0	%
Material Retained 20mm	0	%

Operators	Checked	26-09-17	Ben Sharp	
CA	Approved	27-09-17	Paul Evans	EP Glons

CCTI	Dry Density / Moisture Content Relationship	Contract Number	36503
GSIL	BS 1377:Part 4:1990	Borehole / Pit No	TP110
Site Name	Otterpool Park	Sample No	7
		Depth Top	1.00
Compaction Method	2.5 Kg Rammer	Depth Base	
Compaction Clause	BS1377:Part 4:1990, Clause 3.4	Sample Type	В


Compaction Point	1	2	3	4	5				
Moisture Content	4.4	7.5	11	14	16				
Bulk Density	1.76	1.89	2.07	2.07	2.08				
Dry Density	1.69	1.76	1.88	1.82	1.79				

Initial Moisture Content	11	%
Maximum Dry Density	1.88	Mg/m3
Optimum Moisture Content	11	%
Particle Density	2.65 Assumed	Mg/m3
Material Retained 37.5mm	0	%
Material Retained 20mm	0	%

Operators	Checked	26-09-17	Ben Sharp	
CA	Approved	27-09-17	Paul Evans	SP Glons

CCTI	Dry Density / Moisture Content Relationship	Contract Number	36503
GSIL	BS 1377:Part 4:1990	Borehole / Pit No	TP112
Site Name	Otterpool Park	Sample No	7
		Depth Top	1.00
Compaction Method	2.5 Kg Rammer	Depth Base	1.50
Compaction Clause	BS1377:Part 4:1990, Clause 3.3	Sample Type	В

Compaction Point	1	2	3	4	5				
Moisture Content	6.5	9.5	12	16	19				
Bulk Density	0.79	0.84	0.89	0.90	0.90				
Dry Density	0.75	0.77	0.79	0.78	0.76				

Initial Moisture Content	12	%
Maximum Dry Density	0.79	Mg/m3
Optimum Moisture Content	12	%
Particle Density	2.6 Assumed	Mg/m3
Material Retained 37.5mm	3	%
Material Retained 20mm	4	%

Operators	Checked	26-09-17	Ben Sharp	
CA	Approved	27-09-17	Paul Evans	SP Glons

APPENDIX G

GEO-ENVIRONMENTAL LABORATORY TEST DATA

Jon Raven

Arcadis Consulting (UK) Ltd 10 Medawar Road The Surrey Research Park Guildford Surrey GU2 7AR

t: 0870 000 3005

f: 0870 000 3905

e: jonathan.raven@arcadis.com

i2 Analytical Ltd.
7 Woodshots Meadow,
Croxley Green
Business Park,
Watford,
Herts,
WD18 8YS

t: 01923 225404 **f:** 01923 237404

e: reception@i2analytical.com

Analytical Report Number: 17-58392

Project / Site name: Otterpool Samples received on: 21/08/2017

Your job number: UA008926 Samples instructed on: 23/08/2017

Your order number: Analysis completed by: 01/09/2017

Report Issue Number: 1 **Report issued on:** 01/09/2017

Samples Analysed: 21 soil samples

Signed:

Dr Irma Doyle Senior Account Manager

For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are : soils - 4 weeks from reporting

leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Lab Sample Number				805231	805232	805233	805234	805235
Sample Reference				TP101	TP102	TP104	TP106	TP108
Sample Number				3	3	6	3	9
Depth (m)				0.20	0.30	0.50	0.20	1.00
				15/08/2017	15/08/2017	16/08/2017	22/08/2017	17/08/2017
Date Sampled Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Tille Takeli		1		None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	20
Moisture Content	%	N/A	NONE	13	11	10	15	7.9
Total mass of sample received	kg	0.001	NONE	1.4	1.7	1.5	1.4	1.6
							-	
Asbestos in Soil	Туре	N/A	ISO 17025	Not-detected	Not-detected	Not-detected	Not-detected	Not-detected
General Inorganics	1							
pH - Automated	pH Units	N/A	MCERTS	6.6	6.3	6.8	6.1	6.1
Total Cyanide	mg/kg	1	MCERTS	< 1	< 1	< 1	< 1	< 1
Free Cyanide Water Soluble SO4 16hr extraction (2:1 Leachate	mg/kg	1	MCERTS	< 1	< 1	< 1	< 1	< 1
Equivalent)	g/l	0.00125	MCERTS	0.0050	0.0045	0.0043	0.015	0.0058
Fraction Organic Carbon (FOC)	N/A	0.001	NONE	0.012	0.012	0.0023	0.020	0.0013
Total Phenois								
Total Phenois (monohydric)		1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Total Phenois (mononyunc)	mg/kg	1	MCER 15	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Speciated PAHs								
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Fluorene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Phenanthrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(a)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Chrysene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(a)pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Total DAII								
Total PAH Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	< 0.80	< 0.80	< 0.80	< 0.80	< 0.80
opedated Total EFA-10 FAIIS	my/ky	0.0	PICERTS	\ U.OU	< 0.00	< 0.00	\ U.OU	< 0.00
Heavy Metals / Metalloids								
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	18	13	14	9.2	9.9
Boron (water soluble)	mg/kg	0.2	MCERTS	1.2	0.8	0.5	0.9	0.6
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Chromium (hexavalent)	mg/kg	4	MCERTS	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	31	19	24	14	21
Copper (aqua regia extractable)	mg/kg	1	MCERTS	18	14	13	16	8.9
Lead (aqua regia extractable)	mg/kg	1	MCERTS	31	24	12	38	8.9
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
Niekal (agus yagia autus stabla)	mg/kg	1	MCERTS	33	10	26	5.1	16
Nickel (aqua regia extractable)	mg/kg							
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0

Lab Sample Number				805231	805232	805233	805234	805235
Sample Reference				TP101	TP102	TP104	TP106	TP108
Sample Number				3	3	6	3	9
Depth (m)				0.20	0.30	0.50	0.20	1.00
Date Sampled				15/08/2017	15/08/2017	16/08/2017	22/08/2017	17/08/2017
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Monoaromatics								
Benzene	ug/kg	1	MCERTS	-	-	-	-	< 1.0
Toluene	μg/kg	1	MCERTS	-	_	-	-	< 1.0
Ethylbenzene	μg/kg	1	MCERTS	-	-	-	-	< 1.0
p & m-xylene	μg/kg	1	MCERTS	-	_	-	-	< 1.0
o-xylene	μg/kg	1	MCERTS	-	-	-	-	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	1	MCERTS	-	-	-	-	< 1.0
Petroleum Hydrocarbons Petroleum Range Organics (C6 - C10)	mg/kg	0.1	MCERTS	-	-	-	-	< 0.1
		_						
TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.001	MCERTS	-	-	-	-	< 0.001
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.001	MCERTS	-	-	-	-	< 0.001
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.001	MCERTS	-	-	-	-	< 0.001
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	-	-	-	-	< 1.0
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	-	-	-	-	< 2.0
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	-	-	-	-	< 8.0
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	-	-	-	-	< 8.0
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	-	-	-	-	< 10
TPH-CWG - Aromatic >EC5 - EC7	ma/ka	0.001	MCERTS	_	I -	_	_	< 0.001
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.001	MCERTS					< 0.001
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.001	MCERTS					< 0.001
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	_	_	_	_	< 1.0
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	-	_	_	-	< 2.0
TPH-CWG - Aromatic >EC16 - EC21	ma/ka	10	MCERTS	_	_	_	_	< 10
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	_	_	-	_	< 10
		10						

Lab Sample Number				805231	805232	805233	805234	805235
Sample Reference				TP101	TP102	TP104	TP106	TP108
Sample Number				3	3	6	3	9
Depth (m)				0.20	0.30	0.50	0.20	1.00
Date Sampled				15/08/2017	15/08/2017	16/08/2017	22/08/2017	17/08/2017
Time Taken	1	I	_	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
VOCs								
Chloromethane	μg/kg	1	ISO 17025	-	-	-	-	-
Chloroethane	μg/kg	1	NONE	-	-	-	-	-
Bromomethane	μg/kg	1	ISO 17025	-	-	-	-	-
Vinyl Chloride	μg/kg	1	NONE	-	-	-	-	-
Trichlorofluoromethane	μg/kg	1	NONE	-	-	-	-	-
1,1-Dichloroethene 1,1,2-Trichloro 1,2,2-Trifluoroethane	μg/kg	1	NONE	-	-	-	-	-
Cis-1,2-dichloroethene	μg/kg μg/kg	1	ISO 17025 MCERTS	-	- -	- -	- -	-
MTBE (Methyl Tertiary Butyl Ether)	μg/kg μg/kg	1	MCERTS	<u>-</u>		-	-	-
1,1-Dichloroethane	μg/kg μg/kg	1	MCERTS	-	-	-	-	-
2,2-Dichloropropane	μg/kg	1	MCERTS	-	-	_	_	-
Trichloromethane	μg/kg	1	MCERTS	-	-	-	-	-
1,1,1-Trichloroethane	μg/kg	1	MCERTS	-	-	-	-	-
1,2-Dichloroethane	μg/kg	1	MCERTS	-	-	-	-	-
1,1-Dichloropropene	μg/kg	1	MCERTS	-	-	-	-	-
Trans-1,2-dichloroethene	μg/kg	1	NONE	-	-	-	-	-
Benzene	μg/kg	1	MCERTS	-	-	-	-	-
Tetrachloromethane	μg/kg "	1	MCERTS	-	-	-	-	-
1,2-Dichloropropane	μg/kg	1	MCERTS	-	-	-	-	-
Trichloroethene Dibromomethane	μg/kg	1	MCERTS MCERTS	-	-	-	-	-
Bromodichloromethane	μg/kg μg/kg	1	MCERTS		-	- -	- -	-
Cis-1,3-dichloropropene	μg/kg μg/kg	1	ISO 17025		-			_
Trans-1,3-dichloropropene	μg/kg	1	ISO 17025	_	_	_	_	_
Toluene	μg/kg	1	MCERTS	-	-	-	-	-
1,1,2-Trichloroethane	μg/kg	1	MCERTS	-	-	-	-	-
1,3-Dichloropropane	μg/kg	1	ISO 17025	-	-	-	-	-
Dibromochloromethane	μg/kg	1	ISO 17025	-	-	-	-	-
Tetrachloroethene	μg/kg	1	NONE	-	-	-	-	-
1,2-Dibromoethane	μg/kg	1	ISO 17025	-	-	-	-	-
Chlorobenzene	μg/kg	1	MCERTS	-	-	-	-	-
1,1,1,2-Tetrachloroethane	μg/kg "	1	MCERTS	-	-	-	-	-
Ethylbenzene p & m-Xylene	μg/kg	1	MCERTS	-	<u>-</u> -	- -	- -	-
Styrene	μg/kg μg/kg	1	MCERTS MCERTS	-	-	-	-	_
Tribromomethane	μg/kg μg/kg	1	NONE	-	-	-	-	-
o-Xylene	μg/kg μg/kg	1	MCERTS	-	-	-	-	-
1,1,2,2-Tetrachloroethane	μg/kg	1	MCERTS	-	-	-	-	-
Isopropylbenzene	μg/kg	1	MCERTS	-	-	-	-	-
Bromobenzene	μg/kg	1	MCERTS	-	-	-	-	-
n-Propylbenzene	μg/kg	1	ISO 17025	-	-	-	-	-
2-Chlorotoluene	μg/kg	1	MCERTS	-	-	-	-	-
4-Chlorotoluene	μg/kg	1	MCERTS	-	-	-	-	-
1,3,5-Trimethylbenzene	μg/kg	1	ISO 17025	-	-	-	-	-
tert-Butylbenzene 1,2,4-Trimethylbenzene	μg/kg μα/ka	1	MCERTS ISO 17025	-	<u>-</u>	<u>-</u> -	<u>-</u> -	<u>-</u>
sec-Butylbenzene	μg/kg μg/kg	1	MCERTS	<u>-</u>	-	-	-	-
1,3-Dichlorobenzene	μg/kg μg/kg	1	ISO 17025	-	-	-	-	-
p-Isopropyltoluene	μg/kg μg/kg	1	ISO 17025	-	-	-	-	_
1,2-Dichlorobenzene	μg/kg	1	MCERTS	-	-	-	-	-
1,4-Dichlorobenzene	μg/kg	1	MCERTS	-	-	-	-	-
Butylbenzene	μg/kg	1	MCERTS	-	-	-	-	-
1,2-Dibromo-3-chloropropane	μg/kg	1	ISO 17025	-	-	-	-	-
1,2,4-Trichlorobenzene	μg/kg	1	MCERTS	-	-	-	-	-
Hexachlorobutadiene	μg/kg	1	MCERTS	-	-	-	-	-
1,2,3-Trichlorobenzene	μg/kg	1	ISO 17025	-	-	-	-	-

Lab Sample Number				805231	805232	805233	805234	805235
Sample Reference		TP101	TP102	TP104	TP106	TP108		
Sample Number		3	3	6	3	9		
Depth (m)		0.20	0.30	0.50	0.20	1.00		
Date Sampled				15/08/2017	15/08/2017	16/08/2017	22/08/2017	17/08/2017
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
VOCs TICs								
VOCs TICs Compound Name		N/A	NONE	-	-	-	-	-
VOC % Match	%	N/A	NONE	-	-	-	-	-

Lab Sample Number				805231	805232	805233	805234	805235
Sample Reference				TP101	TP102	TP104	TP106	TP108
Sample Number				3	3	6	3	9
Depth (m)				0.20	0.30	0.50	0.20	1.00
Date Sampled				15/08/2017	15/08/2017	16/08/2017	22/08/2017	17/08/2017
Time Taken			_	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
SVOCs			•					
Aniline	mg/kg	0.1	NONE	-	-	-	-	-
Phenol	mg/kg	0.2	ISO 17025	-	-	-	-	-
2-Chlorophenol	mg/kg	0.1	MCERTS	-	-	-	-	-
Bis(2-chloroethyl)ether	mg/kg	0.2	MCERTS	-	-	-	-	-
1,3-Dichlorobenzene	mg/kg	0.2	MCERTS	-	-	-	-	-
1,2-Dichlorobenzene	mg/kg	0.1	MCERTS	-	-	-	-	-
1,4-Dichlorobenzene	mg/kg	0.2	MCERTS	-	-	-	-	-
Bis(2-chloroisopropyl)ether	mg/kg	0.1	MCERTS	-	-	-	-	-
2-Methylphenol Hexachloroethane	mg/kg	0.3	MCERTS	-	-	-	-	-
Nitrobenzene	mg/kg mg/kg	0.05	MCERTS MCERTS	-	-	-	-	-
4-Methylphenol	mg/kg	0.2	NONE	-	_	-	_	_
Isophorone	mg/kg	0.2	MCERTS	_	_	-	_	_
2-Nitrophenol	mg/kg	0.3	MCERTS	-	-	-	-	-
2,4-Dimethylphenol	mg/kg	0.3	MCERTS	-	-	-	-	-
Bis(2-chloroethoxy)methane	mg/kg	0.3	MCERTS	-	-	-	-	-
1,2,4-Trichlorobenzene	mg/kg	0.3	MCERTS	-	-	-	-	-
Naphthalene	mg/kg	0.05	MCERTS	-	-	-	-	-
2,4-Dichlorophenol	mg/kg	0.3	MCERTS	-	-	-	-	-
4-Chloroaniline	mg/kg	0.1	NONE	-	-	-	-	-
Hexachlorobutadiene	mg/kg	0.1	MCERTS	-	-	-	-	-
4-Chloro-3-methylphenol	mg/kg	0.1	NONE	<u> </u>	-	-	-	-
2,4,6-Trichlorophenol 2,4,5-Trichlorophenol	mg/kg	0.1	MCERTS MCERTS	-		-	-	-
2-Methylnaphthalene	mg/kg mg/kg	0.2	NONE		-	-	-	_
2-Chloronaphthalene	mg/kg	0.1	MCERTS	_	_	_	_	_
Dimethylphthalate	mg/kg	0.1	MCERTS	_	_	_	_	_
2,6-Dinitrotoluene	mg/kg	0.1	MCERTS	-	-	-	-	-
Acenaphthylene	mg/kg	0.05	MCERTS	-	-	-	-	-
Acenaphthene	mg/kg	0.05	MCERTS	-	-	-	-	-
2,4-Dinitrotoluene	mg/kg	0.2	MCERTS	-	-	-	-	-
Dibenzofuran	mg/kg	0.2	MCERTS	-	-	-	-	-
4-Chlorophenyl phenyl ether	mg/kg	0.3	ISO 17025	-	-	-	-	-
Diethyl phthalate	mg/kg	0.2	MCERTS	-	-	-	-	-
4-Nitroaniline	mg/kg	0.2	MCERTS	-	-	<u>-</u> -	-	-
Fluorene Azobenzene	mg/kg mg/kg	0.05	MCERTS MCERTS	-	-	-	<u>-</u>	-
Bromonhenyl phenyl ether	mg/kg mg/ka	0.3	MCERTS	-		-	_	-
Hexachlorobenzene	mg/kg	0.3	MCERTS	-	-	-	-	-
Phenanthrene	mg/kg	0.05	MCERTS	-	-	-	-	-
Anthracene	mg/kg	0.05	MCERTS	-	-	-	-	-
Carbazole	mg/kg	0.3	MCERTS	-	-	-	-	-
Dibutyl phthalate	mg/kg	0.2	MCERTS	-	-	-	-	-
Anthraquinone	mg/kg	0.3	MCERTS	-	-	-	-	-
Fluoranthene	mg/kg	0.05	MCERTS	-	-	-	-	-
Pyrene	mg/kg	0.05	MCERTS	-	-	-	-	-
Butyl benzyl phthalate	mg/kg	0.3	ISO 17025	-	-	-	-	-
Benzo(a)anthracene	mg/kg	0.05	MCERTS	-	-	-	-	-
Chrysene Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	- -	<u>-</u> -	-	-	-
Benzo(k)fluoranthene Benzo(k)fluoranthene	mg/kg mg/kg	0.05	MCERTS MCERTS	-	-	-	-	-
Benzo(a)pyrene	mg/kg mg/kg	0.05	MCERTS	-	-	-	-	-
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	-	-	-	-	-
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	-	-	-	-	-
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	-	-	-	-	-
₩ /F * I * *	. 31.19			•	-	•		-

Lab Sample Number				805231	805232	805233	805234	805235
Sample Reference				TP101	TP102	TP104	TP106	TP108
Sample Number				3	3	6	3	9
Depth (m)				0.20	0.30	0.50	0.20	1.00
Date Sampled				15/08/2017	15/08/2017	16/08/2017	22/08/2017	17/08/2017
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Time Taken		1		None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
SVOCs TICs								
SVOCs TICs Compound Name		N/A	NONE	-	-	-	-	-
SVOC % Match	%	N/A	NONE	-	-	-	-	-
SVOCs TICs Compound Name SVOC % Match	%	N/A N/A	NONE NONE	- -	- -	- -	- -	- -
		,.						
SVOCs TICs Compound Name		N/A	NONE	-	-	-	-	-
SVOC % Match	%	N/A	NONE	-	-	-	-	-
SVOCs TICs Compound Name		N/A	NONE	-	-	-	-	-
SVOC % Match	%	N/A	NONE	-	-	-	-	-
SVOCs TICs Compound Name		N/A	NONE	_	_	_	_	_
SVOC % Match	%	N/A	NONE	_	-	_	_	_
SVOCs TICs Compound Name		N/A	NONE	-	-	-	-	-
SVOC % Match	%	N/A	NONE	-	-	-	-	-
SVOCs TICs Compound Name		N/A	NONE	-	-	-	-	ı
SVOC % Match	%	N/A	NONE	-	-	-	-	-
SVOCs TICs Compound Name		N/A	NONE	-	-	-	-	-
SVOC % Match	%	N/A	NONE	-	-	-	-	-
SVOCs TICs Compound Name		N/A	NONE	-	_	_	_	_
SVOC % Match	%	N/A	NONE	_	-	<u> </u>	<u> </u>	<u> </u>
5.55.75.74661	,,,	13/13	HOHE	-				
SVOCs TICs Compound Name		N/A	NONE		_	_	_	_
SVOC % Match	%	N/A	NONE	_	-	<u> </u>	<u> </u>	<u>-</u>

Lab Canada Namban				005336	005227	005330	005220	005240
Lab Sample Number				805236	805237	805238	805239	805240 TD112
Sample Reference Sample Number				TP109 3	TP110 3	TP113 3	TP113 6	TP113 2
Depth (m)				0.30	0.30	0.30	0.60	1.40
Date Sampled				21/08/2017	22/08/2017	17/08/2017	17/08/2017	17/08/2017
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Tille Takeli	1	1		None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	N/A	NONE	12	15	8.2	13	17
Total mass of sample received	kg	0.001	NONE	1.5	1.6	1.8	1.4	1.6
Asbestos in Soil	T	NI/A	100 17025	Not detected	Not detected	Nat datastad	Nat datastad	Not detected
Aspestos III Soli	Туре	N/A	ISO 17025	Not-detected	Not-detected	Not-detected	Not-detected	Not-detected
General Inorganics								
pH - Automated	pH Units	N/A	MCERTS	6.3	7.7	9.1	7.2	7.6
Total Cyanide	mg/kg	1	MCERTS	< 1	< 1	< 1	< 1	< 1
Free Cyanide	mg/kg	1	MCERTS	< 1	< 1	< 1	< 1	< 1
Water Soluble SO4 16hr extraction (2:1 Leachate	- 0	0.00125	MCEDIC	0.0005	0.015	0.20	0.035	0.000
Equivalent) Eraction Organic Carbon (EOC)	g/l N/A	0.00125	MCERTS	0.0085 0.016	0.015 0.011	0.20 0.018	0.025	0.060 0.0061
Fraction Organic Carbon (FOC)	N/A	0.001	NONE	0.016	0.011	0.018	0.0037	0.0001
Total Phenois								
Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Speciated PAHs								
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	0.09	< 0.05	< 0.05
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	0.70	< 0.05	< 0.05
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	0.24	< 0.05	0.12
Fluorene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	0.27	< 0.05	0.14
Phenanthrene	mg/kg	0.05	MCERTS	0.20	0.09	4.2	< 0.05	1.2
Anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	1.5	< 0.05	0.29
Fluoranthene	mg/kg	0.05	MCERTS	0.85	0.26	16	< 0.05	1.6
Pyrene	mg/kg	0.05	MCERTS	0.78	0.27	16	< 0.05	1.3
Benzo(a)anthracene	mg/kg	0.05	MCERTS	0.57	0.15	12	< 0.05	0.67
Chrysene	mg/kg	0.05	MCERTS	0.45	0.21	9.1	< 0.05	0.64
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	0.60	0.15	12	< 0.05	0.48
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	0.53	0.22	16	< 0.05	0.57
Benzo(a)pyrene	mg/kg	0.05	MCERTS	0.73	0.24	19	< 0.05	0.67
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	0.42	0.13	11	< 0.05	0.36
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	0.12	< 0.05	3.1	< 0.05	0.08
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	0.48	0.15	12	< 0.05	0.40
Total PAH								
Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	5.73	1.87	133	< 0.80	8.54
Heavy Motals / Motalloids								
Heavy Metals / Metalloids Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	12	8.9	8.3	12	11
Boron (water soluble)	mg/kg	0.2	MCERTS	1.2	1.0	1.0	0.9	1.1
Cadmium (agua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Chromium (hexavalent)	mg/kg	4	MCERTS	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	15	21	30	20	27
Copper (aqua regia extractable)	mg/kg	1	MCERTS	23	14	36	11	13
Lead (aqua regia extractable)	mg/kg	1	MCERTS	47	17	44	15	31
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	11	14	29	22	24
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	73	46	470	36	44

Lab Sample Number				805236	805237	805238	805239	805240
Sample Reference				TP109	TP110	TP113	TP113	TP113
Sample Number				3	3	3	6	2
Depth (m)				0.30	0.30	0.30	0.60	1.40
Date Sampled		21/08/2017	22/08/2017	17/08/2017	17/08/2017	17/08/2017		
Гime Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplie
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
1 onoaromatics								
Benzene	ug/kg	1	MCERTS	< 1.0	-	< 1.0	< 1.0	< 1.0
Toluene	μg/kg	1	MCERTS	< 1.0	-	< 1.0	< 1.0	< 1.0
Ethylbenzene	μg/kg	1	MCERTS	< 1.0	-	< 1.0	< 1.0	< 1.0
o & m-xylene	μg/kg	1	MCERTS	< 1.0	-	< 1.0	< 1.0	< 1.0
o-xylene	μg/kg	1	MCERTS	< 1.0	-	< 1.0	< 1.0	< 1.0
ATBE (Methyl Tertiary Butyl Ether)	μg/kg	1	MCERTS	< 1.0	-	< 1.0	< 1.0	< 1.0
Petroleum Hydrocarbons Petroleum Range Organics (C6 - C10)	mg/kg	0.1	MCERTS	< 0.1	-	< 0.1	< 0.1	< 0.1
	, 5, 5				•			•
ГРН-CWG - Aliphatic >EC5 - EC6	mg/kg	0.001	MCERTS	< 0.001	-	< 0.001	< 0.001	< 0.001
PH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.001	MCERTS	< 0.001		< 0.001	< 0.001	< 0.001
PH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	-	< 0.001	< 0.001	< 0.001
TOU CIVIC Alleberies EC10 EC13				1.0		4.0	1.0	1

Petroleum Hydrocarbons								
Petroleum Range Organics (C6 - C10)	mg/kg	0.1	MCERTS	< 0.1	-	< 0.1	< 0.1	< 0.1
TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.001	MCERTS	< 0.001	-	< 0.001	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.001	MCERTS	< 0.001	-	< 0.001	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	-	< 0.001	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	-	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	-	15	< 2.0	2.7
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	< 8.0	-	33	< 8.0	12
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	< 8.0	-	170	< 8.0	34
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10	-	220	< 10	48
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.001	MCERTS	< 0.001	-	< 0.001	< 0.001	< 0.001
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.001	MCERTS	< 0.001	-	< 0.001	< 0.001	< 0.001
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	-	< 0.001	< 0.001	< 0.001
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	-	< 1.0	< 1.0	1.0
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	2.5	-	8.0	< 2.0	5.1
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	< 10	-	110	< 10	19
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	28	-	690	12	36
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	38	-	810	16	61

Lab Sample Number				805236	805237	805238	805239	805240
Sample Reference				TP109	TP110	TP113	TP113	TP113
Sample Number				3	3	3	6	2
Depth (m)				0.30	0.30	0.30	0.60	1.40
Date Sampled Time Taken				21/08/2017 None Supplied	22/08/2017 None Supplied	17/08/2017 None Supplied	17/08/2017	17/08/2017 None Supplied
rime raken	1	I		None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
VOCs								
Chloromethane	μg/kg	1	ISO 17025	-	-	< 1.0	-	-
Chloroethane	μg/kg	1	NONE	-	-	< 1.0	-	-
Bromomethane	μg/kg	1	ISO 17025	-	-	< 1.0	-	-
Vinyl Chloride	μg/kg	1	NONE	-	-	< 1.0	-	-
Trichlorofluoromethane	μg/kg	1	NONE	-	-	< 1.0	-	-
1,1-Dichloroethene	μg/kg	1	NONE	-	-	< 1.0	-	-
1,1,2-Trichloro 1,2,2-Trifluoroethane	μg/kg	1	ISO 17025	-	-	< 1.0	-	-
Cis-1,2-dichloroethene	μg/kg	1	MCERTS MCERTS	-	-	< 1.0	-	-
MTBE (Methyl Tertiary Butyl Ether) 1,1-Dichloroethane	μg/kg μg/kg	1	MCERTS	-	<u>-</u> -	< 1.0	-	-
2,2-Dichloropropane	μg/kg μg/kg	1	MCERTS	-	-	< 1.0 < 1.0	-	-
Z,Z-Dichloropropane Trichloromethane	μg/kg μg/kg	1	MCERTS	-	-	< 1.0	-	-
1.1.1-Trichloroethane	μg/kg	1	MCERTS	_	_	< 1.0	_	_
1,2-Dichloroethane	μg/kg	1	MCERTS	-	_	< 1.0	_	_
1,1-Dichloropropene	μg/kg	1	MCERTS	-	_	< 1.0	-	-
Trans-1,2-dichloroethene	μg/kg	1	NONE	-	-	< 1.0	-	-
Benzene	μg/kg	1	MCERTS	-	-	< 1.0	-	-
Tetrachloromethane	μg/kg	1	MCERTS	-	-	< 1.0	-	-
1,2-Dichloropropane	μg/kg	1	MCERTS	-	-	< 1.0	-	-
Trichloroethene	μg/kg	1	MCERTS	-	-	< 1.0	-	-
Dibromomethane	μg/kg	1	MCERTS	-	-	< 1.0	-	-
Bromodichloromethane	μg/kg	1	MCERTS	-	-	< 1.0	-	-
Cis-1,3-dichloropropene	μg/kg	1	ISO 17025	-	-	< 1.0	-	-
Trans-1,3-dichloropropene	μg/kg	1	ISO 17025	-	-	< 1.0	-	-
Toluene	μg/kg	1	MCERTS	-	-	< 1.0	-	-
1,1,2-Trichloroethane	μg/kg	1	MCERTS ISO 17025	-	-	< 1.0	-	-
1,3-Dichloropropane Dibromochloromethane	μg/kg μg/kg	1	ISO 17025		-	< 1.0 < 1.0	-	-
Tetrachloroethene	μg/kg μg/kg	1	NONE	-		< 1.0		-
1,2-Dibromoethane	μg/kg	1	ISO 17025	_	_	< 1.0	_	_
Chlorobenzene	μg/kg	1	MCERTS	-	_	< 1.0	_	_
1,1,1,2-Tetrachloroethane	μg/kg	1	MCERTS	_	_	< 1.0	-	-
Ethylbenzene	μg/kg	1	MCERTS	-	-	< 1.0	-	-
p & m-Xylene	μg/kg	1	MCERTS	-	-	< 1.0	-	-
Styrene	μg/kg	1	MCERTS	-	-	< 1.0	-	-
Tribromomethane	μg/kg	1	NONE	-	-	< 1.0	-	-
o-Xylene	μg/kg	1	MCERTS	-	-	< 1.0	-	-
1,1,2,2-Tetrachloroethane	μg/kg	1	MCERTS	-	-	< 1.0	-	-
Isopropylbenzene	μg/kg 	1	MCERTS	-	-	< 1.0	-	-
Bromobenzene	μg/kg	1	MCERTS	-	-	< 1.0	-	-
n-Propylbenzene	μg/kg	1	ISO 17025	-	-	< 1.0	-	-
2-Chlorotoluene	μg/kg	1	MCERTS	-	-	< 1.0	-	-
4-Chlorotoluene 1,3,5-Trimethylbenzene	μg/kg μg/kg	1	MCERTS ISO 17025	-	-	< 1.0 < 1.0	<u>-</u>	-
tert-Butylbenzene	μg/kg μg/kg	1	MCERTS	-	-	< 1.0	-	_
1,2,4-Trimethylbenzene	μg/kg μg/kg	1	ISO 17025	-	-	< 1.0	-	-
sec-Butylbenzene	μg/kg	1	MCERTS	-	-	< 1.0	-	-
1,3-Dichlorobenzene	μg/kg	1	ISO 17025	-	-	< 1.0	-	-
p-Isopropyltoluene	μg/kg	1	ISO 17025	-	-	< 1.0	-	-
1,2-Dichlorobenzene	μg/kg	1	MCERTS	-	-	< 1.0	-	-
1,4-Dichlorobenzene	μg/kg	1	MCERTS	-	-	< 1.0	-	-
Butylbenzene	μg/kg	1	MCERTS	-	-	< 1.0	-	-
1,2-Dibromo-3-chloropropane	μg/kg	1	ISO 17025	-	-	< 1.0	-	-
1,2,4-Trichlorobenzene	μg/kg 	1	MCERTS	-	-	< 1.0	-	-
Hexachlorobutadiene	μg/kg	1	MCERTS	-	-	< 1.0	-	-
1,2,3-Trichlorobenzene	μg/kg	1	ISO 17025	-	-	< 1.0	-	-

Lab Sample Number				805236	805237	805238	805239	805240
Sample Reference				TP109	TP110	TP113	TP113	TP113
Sample Number				3	3	3	6	2
Depth (m)				0.30	0.30	0.30	0.60	1.40
Date Sampled	•				22/08/2017	17/08/2017	17/08/2017	17/08/2017
Time Taken	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied			
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
VOCs TICs								
VOCs TICs Compound Name		N/A	NONE	-	-	ND	-	-
VOC % Match	%	N/A	NONE	_	-	0	-	-

Lab Sample Number				805236	805237	805238	805239	805240
Sample Reference				TP109	TP110	TP113	TP113	TP113
Sample Number				3	3	3	6	2
Depth (m)				0.30	0.30	0.30	0.60	1.40
Date Sampled				21/08/2017	22/08/2017	17/08/2017	17/08/2017	17/08/2017
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Time Taken				None Supplied	топе заррнеа	None Supplied	попе заррнеа	Horic Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
SVOCs								
Aniline	mg/kg	0.1	NONE	_	_	< 0.1	_	_
Phenol	mg/kg	0.2	ISO 17025	_	_	< 0.2	_	_
2-Chlorophenol	mg/kg	0.1	MCERTS	_	_	< 0.1	-	-
Bis(2-chloroethyl)ether	mg/kg	0.2	MCERTS	_	_	< 0.2	-	-
1,3-Dichlorobenzene	mg/kg	0.2	MCERTS	-	-	< 0.2	-	-
1,2-Dichlorobenzene	mg/kg	0.1	MCERTS	-	-	< 0.1	-	-
1,4-Dichlorobenzene	mg/kg	0.2	MCERTS	-	-	< 0.2	-	-
Bis(2-chloroisopropyl)ether	mg/kg	0.1	MCERTS	-	-	< 0.1	-	-
2-Methylphenol	mg/kg	0.3	MCERTS	-	-	< 0.3	-	-
Hexachloroethane	mg/kg	0.05	MCERTS	-	-	< 0.05	-	-
Nitrobenzene	mg/kg	0.3	MCERTS	-	-	< 0.3	-	-
4-Methylphenol	mg/kg	0.2	NONE	-	-	< 0.2	-	-
Isophorone	mg/kg	0.2	MCERTS	-	-	< 0.2	-	-
2-Nitrophenol	mg/kg	0.3	MCERTS	-	-	< 0.3	-	-
2,4-Dimethylphenol	mg/kg	0.3	MCERTS	-	-	< 0.3	-	-
Bis(2-chloroethoxy)methane	mg/kg	0.3	MCERTS	-	-	< 0.3	-	-
1,2,4-Trichlorobenzene	mg/kg	0.3	MCERTS	-	-	< 0.3	-	-
Naphthalene	mg/kg	0.05	MCERTS	-	-	0.09	-	-
2,4-Dichlorophenol 4-Chloroaniline	mg/kg	0.3	MCERTS	-	-	< 0.3 < 0.1	- -	-
Hexachlorobutadiene	mg/kg mg/kg	0.1	NONE MCERTS	-	<u>-</u>	< 0.1		_
4-Chloro-3-methylphenol	mg/kg	0.1	NONE	_	_	< 0.1	_	_
2,4,6-Trichlorophenol	mg/kg	0.1	MCERTS	_	_	< 0.1	_	_
2,4,5-Trichlorophenol	mg/kg	0.2	MCERTS	_	_	< 0.2	-	-
2-Methylnaphthalene	mg/kg	0.1	NONE	-	-	< 0.1	-	-
2-Chloronaphthalene	mg/kg	0.1	MCERTS	-	-	< 0.1	-	-
Dimethylphthalate	mg/kg	0.1	MCERTS	-	-	< 0.1	-	-
2,6-Dinitrotoluene	mg/kg	0.1	MCERTS	-	-	< 0.1	-	-
Acenaphthylene	mg/kg	0.05	MCERTS	-	-	0.70	-	-
Acenaphthene	mg/kg	0.05	MCERTS	-	-	0.24	-	-
2,4-Dinitrotoluene	mg/kg	0.2	MCERTS	-	-	< 0.2	-	-
Dibenzofuran	mg/kg	0.2	MCERTS	-	-	< 0.2	-	-
4-Chlorophenyl phenyl ether	mg/kg	0.3	ISO 17025	-	-	< 0.3	-	-
Diethyl phthalate	mg/kg	0.2	MCERTS	-	-	< 0.2	-	-
4-Nitroaniline	mg/kg	0.2	MCERTS	-	-	< 0.2	-	-
Fluorene	mg/kg	0.05	MCERTS MCERTS	-	<u>-</u>	0.27	- -	-
Azobenzene Bromophenyl phenyl ether	mg/kg	0.3	MCERTS		<u>-</u>	< 0.3 < 0.2		-
Hexachlorobenzene	mg/kg mg/kg	0.2	MCERTS	-	-	< 0.3	-	-
Phenanthrene	mg/kg	0.05	MCERTS	-	-	4.2	-	-
Anthracene	mg/kg	0.05	MCERTS	_	_	1.5	-	-
Carbazole	mg/kg	0.03	MCERTS	-	-	0.5	-	-
Dibutyl phthalate	mg/kg	0.2	MCERTS	-	-	< 0.2	-	-
Anthraquinone	mg/kg	0.3	MCERTS	-	-	0.5	-	-
Fluoranthene	mg/kg	0.05	MCERTS	-	-	16	-	
Pyrene	mg/kg	0.05	MCERTS	-	-	16	-	-
Butyl benzyl phthalate	mg/kg	0.3	ISO 17025	-	-	< 0.3	-	-
Benzo(a)anthracene	mg/kg	0.05	MCERTS	-	-	12	-	-
Chrysene	mg/kg	0.05	MCERTS	-	-	9.1	-	-
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	-	-	12	-	-
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	-	-	16	-	-
Benzo(a)pyrene	mg/kg	0.05	MCERTS	-	-	19	-	-
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	-	-	11	-	-
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	-	-	3.1	-	-
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	-	-	12	-	-

Lab Sample Number				805236	805237	805238	805239	805240
Sample Reference				TP109	TP110	TP113	TP113	TP113
Sample Number				3	3	3	6	2
Depth (m)				0.30	0.30	0.30	0.60	1.40
Date Sampled				21/08/2017	22/08/2017	17/08/2017	17/08/2017	17/08/2017
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
SVOCs TICs]				
SVOCs TICs Compound Name		N/A	NONE	-	-	Benzo[e]pyrene	-	-
SVOC % Match	%	N/A	NONE	-	-	98	-	-
SVOCs TICs Compound Name		N/A	NONE	_	_	9- Octadecenamide, (Z)-	_	_
SVOC % Match	%	N/A	NONE	-	-	97	_	_
SVOCs TICs Compound Name	, ,	N/A	NONE	_	_	3,4:9,10- Dibenzopyrene	_	_
SVOC % Match	%	N/A	NONE	-	-	97	_	-
						Dibenz(a,e)aceant		
SVOCs TICs Compound Name		N/A	NONE	-	-	hrylene	-	-
SVOC % Match	%	N/A	NONE	-	-	97 1,2:3,4-	-	-
SVOCs TICs Compound Name		N/A	NONE	_	-	Dibenzopyrene	-	_
SVOC % Match	%	N/A	NONE	-	-	97	-	-
SVOCs TICs Compound Name		N/A	NONE	-	-	Tetradecane	-	-
SVOC % Match	%	N/A	NONE	-	-	96	-	-
SVOCs TICs Compound Name		N/A	NONE	_	_	Pyrene, 1-methyl-	_	_
SVOC % Match	%	N/A	NONE	-	-	96	-	-
						Benzo[g]pteridine- 10(2H)- acetaldehyde, 3,4- dihydro-7,8-		
SVOCs TICs Compound Name		N/A	NONE	-	-	dimethyl-2,4-dioxo	-	-
SVOC % Match	%	N/A	NONE	-	-	96	-	-
SVOCs TICs Compound Name		N/A	NONE	-	-	Dibenzothiophene	-	-
SVOC % Match	%	N/A	NONE	-	-	95 1H-	-	-
				-		Cyclopropa[l]phen anthrene,1a,9b-		
SVOCs TICs Compound Name	6,	N/A	NONE		-	dihydro-	-	-
SVOC % Match	%	N/A	NONE	-	-	95	-	-

Lab Sample Number				805241	805242	805243	805244	805245
Sample Reference				TP113	TP113	WS101	WS102A	WS104C
Sample Number				5	1	None Supplied	None Supplied	None Supplied
Depth (m)				2.00	3.00	0.50-0.55	0.00-0.20	0.10-0.20
Date Sampled				17/08/2017	17/08/2017	16/08/2017	17/08/2017	17/08/2017
Time Taken		•		None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	30
Moisture Content	%	N/A	NONE	19	19	13	15	8.5
Total mass of sample received	kg	0.001	NONE	1.8	1.9	1.8	2.0	2.0
Asbestos in Soil	Туре	N/A	ISO 17025	Not-detected	Not-detected	Not-detected	Not-detected	Not-detected
General Inorganics								
pH - Automated	pH Units	N/A	MCERTS	7.6	7.7	7.8	7.4	8.2
Total Cyanide	mg/kg	1	MCERTS	< 1	< 1	< 1	< 1	< 1
Free Cyanide	mg/kg	1	MCERTS	< 1	< 1	< 1	< 1	< 1
Water Soluble SO4 16hr extraction (2:1 Leachate				· -	· -	· -	· -	
Equivalent)	g/l	0.00125	MCERTS	0.022	0.0077	0.0057	0.0083	0.0090
Fraction Organic Carbon (FOC)	N/A	0.001	NONE	0.0044	< 0.0010	0.012	0.022	0.020
Total Phenois								
Total Phenois (monohydric)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Total Phenois (mononyunc)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Speciated PAHs							1	
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	0.10	< 0.05	< 0.05
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	0.17	< 0.05	0.10
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	0.36	< 0.05	< 0.05
Fluorene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	0.32	< 0.05	< 0.05
Phenanthrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	3.9	< 0.05	0.44
Anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	1.1	< 0.05	0.16
Fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	7.1	< 0.05	1.7
Pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	5.3	< 0.05	1.3
Benzo(a)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	5.1	< 0.05	1.3
Chrysene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	2.3	< 0.05	0.57
Benzo(b)fluoranthene	mg/kg	0.05 0.05	MCERTS	< 0.05 < 0.05	< 0.05 < 0.05	6.2 1.6	< 0.05 < 0.05	1.7
Benzo(k)fluoranthene	mg/kg		MCERTS					0.55
Benzo(a)pyrene Indeno(1,2,3-cd)pyrene	mg/kg mg/kg	0.05 0.05	MCERTS MCERTS	< 0.05 < 0.05	< 0.05 < 0.05	5.2 2.3	< 0.05 < 0.05	1.4 0.78
Dibenz(a,h)anthracene	mg/кg mg/kg	0.05	MCERTS	< 0.05	< 0.05	0.43	< 0.05	0.78
Benzo(ghi)pervlene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	2.2	< 0.05	0.14
	9/ 1.9	0.05	HOLINIO	1 0.00			1 0.00	0.70
Total PAH				. 0.00	. 0.00	42.6	. 0.00	10.0
Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	< 0.80	< 0.80	43.6	< 0.80	10.9
Heavy Metals / Metalloids								
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	18	14	7.4	15	9.3
Boron (water soluble)	mg/kg	0.2	MCERTS	0.8	0.5	1.5	1.4	0.8
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Chromium (hexavalent)	mg/kg	4	MCERTS	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	36	24	41	32	43
Copper (aqua regia extractable)	mg/kg	1	MCERTS	15	9.7	13	15	34
Lead (aqua regia extractable)	mg/kg	1	MCERTS	22	11	36	19	30
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	44	33	27	29	21
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	49	34	70	71	81

Lab Sample Number	_			805241	805242	805243	805244	805245
Sample Reference				TP113	TP113	WS101	WS102A	WS104C
Sample Number				5	1	None Supplied	None Supplied	None Supplied
Depth (m)				2.00	3.00	0.50-0.55	0.00-0.20	0.10-0.20
Date Sampled				17/08/2017	17/08/2017	16/08/2017	17/08/2017	17/08/2017
Time Taken		None Supplied	None Supplied	None Supplied	None Supplied	None Supplied		
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Monoaromatics								
Benzene	ug/kg	1	MCERTS	< 1.0	< 1.0	-	-	< 1.0
Toluene	μg/kg	1	MCERTS	< 1.0	< 1.0	-	-	< 1.0
Ethylbenzene	μg/kg	1	MCERTS	< 1.0	< 1.0	-	-	< 1.0
p & m-xylene	μg/kg	1	MCERTS	< 1.0	< 1.0	-	-	< 1.0
o-xylene	μg/kg	1	MCERTS	< 1.0	< 1.0	-	-	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	1	MCERTS	< 1.0	< 1.0	-	-	< 1.0
Petroleum Hydrocarbons								
Petroleum Range Organics (C6 - C10)	mg/kg	0.1	MCERTS	< 0.1	< 0.1	-	-	-
			1					
TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.001	MCERTS	< 0.001	< 0.001	-	-	< 0.001
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.001	MCERTS	< 0.001	< 0.001	_	_	< 0.001

Petroleum Range Organics (C6 - C10)	mg/kg	0.1	MCERTS	< 0.1	< 0.1	_	-	_
retroieum nunge organies (eo e10)	mg/kg	0.1	TICERTS	10.1	1 0.11			II.
TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.001	MCERTS	< 0.001	< 0.001	-	-	< 0.001
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.001	MCERTS	< 0.001	< 0.001	-	-	< 0.001
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	< 0.001	-	-	< 0.001
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	-	-	< 1.0
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0	-	-	< 2.0
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	< 8.0	< 8.0	-	-	< 8.0
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	< 8.0	< 8.0	-	-	46
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10	13	-	-	53
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.001	MCERTS	< 0.001	< 0.001	-	-	< 0.001
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.001	MCERTS	< 0.001	< 0.001	-	-	< 0.001
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	< 0.001	-	-	< 0.001
ΓPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	-	-	< 1.0
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	2.1	3.2	-	-	2.5
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	< 10	< 10	-	-	14
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	< 10	15	-	-	120
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	11	24	-	-	140

Lab Sample Number				805241	805242	805243	805244	805245
Sample Reference				TP113	TP113	WS101	WS102A	WS104C
Sample Number				5	1	None Supplied	None Supplied	None Supplied
Depth (m)				2.00	3.00	0.50-0.55	0.00-0.20	0.10-0.20
Date Sampled				17/08/2017	17/08/2017	16/08/2017	17/08/2017	17/08/2017
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
VOCs								A
Chloromethane	μg/kg	1	ISO 17025	-	-	-	-	-
Chloroethane	μg/kg	1	NONE	-	-	-	-	-
Bromomethane	μg/kg	1	ISO 17025	-	-	-	-	-
Vinyl Chloride	μg/kg	1	NONE	-	-	-	-	-
Trichlorofluoromethane	μg/kg	1	NONE	-	-	-	-	-
1,1-Dichloroethene	μg/kg	1	NONE	-	-	-	-	-
1,1,2-Trichloro 1,2,2-Trifluoroethane	μg/kg	11	ISO 17025	-	-	-	-	-
Cis-1,2-dichloroethene	μg/kg	1	MCERTS	-	-	-	-	-
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	1	MCERTS	-	-	-	-	-
1,1-Dichloroethane	μg/kg	1	MCERTS	-	-	-	-	-
2,2-Dichloropropane	μg/kg	1	MCERTS	-	-	-	-	-
Trichloromethane 1.1.1-Trichloroethane	μg/kg	1	MCERTS MCERTS	-	-	<u>-</u> -	-	-
1,2-Dichloroethane	μg/kg μg/kg	1	MCERTS		<u>-</u> -	-	<u>-</u>	-
1,1-Dichloropropene	μg/kg μg/kg	1	MCERTS	<u>-</u>	-		-	-
Trans-1,2-dichloroethene	μg/kg μg/kg	1	NONE		-	_	_	_
Benzene	μg/kg μg/kg	1	MCERTS	<u>-</u>		-	-	-
Tetrachloromethane	μg/kg	1	MCERTS	-	-	-	-	
1,2-Dichloropropane	μg/kg	1	MCERTS	_	_	_	_	_
Trichloroethene	μg/kg	1	MCERTS	-	_	_	_	_
Dibromomethane	μg/kg	1	MCERTS	-	_	_	_	_
Bromodichloromethane	μg/kg	1	MCERTS	-	-	-	-	_
Cis-1,3-dichloropropene	μg/kg	1	ISO 17025	-	-	-	-	-
Trans-1,3-dichloropropene	μg/kg	1	ISO 17025	-	-	-	-	-
Toluene	μg/kg	1	MCERTS	-	-	-	-	-
1,1,2-Trichloroethane	μg/kg	1	MCERTS	-	-	-	-	-
1,3-Dichloropropane	μg/kg	1	ISO 17025	-	-	-	-	-
Dibromochloromethane	μg/kg	1	ISO 17025	-	-	-	-	-
Tetrachloroethene	μg/kg	1	NONE	-	-	-	-	-
1,2-Dibromoethane	μg/kg	1	ISO 17025	-	-	-	-	-
Chlorobenzene	μg/kg	1	MCERTS	-	-	-	-	-
1,1,1,2-Tetrachloroethane	μg/kg	1	MCERTS	-	-	-	-	-
Ethylbenzene	μg/kg	1	MCERTS	-	-	-	-	-
p & m-Xylene	μg/kg	1	MCERTS	-	-	-	-	-
Styrene	μg/kg	1	MCERTS	-	-	-	-	-
Tribromomethane	μg/kg	1	NONE	-	-	-	-	-
o-Xylene	μg/kg	1	MCERTS	-	-	-	-	-
1,1,2,2-Tetrachloroethane Isopropylbenzene	μg/kg μα/ka	1	MCERTS MCERTS	-	-	-	-	-
Bromobenzene	μg/kg μg/kg	1	MCERTS	-	-	-	-	-
n-Propylbenzene	μg/kg μg/kg	1	ISO 17025	-	-	-	-	
2-Chlorotoluene	μg/kg μg/kg	1	MCERTS	-	-	-	-	_
4-Chlorotoluene	μg/kg μg/kg	1	MCERTS	_	_	_	_	_
1,3,5-Trimethylbenzene	μg/kg	1	ISO 17025	-	-	-	-	-
tert-Butylbenzene	μg/kg	1	MCERTS	-	-	-	-	-
1,2,4-Trimethylbenzene	μg/kg	1	ISO 17025	-	-	-	-	-
sec-Butylbenzene	μg/kg	1	MCERTS	-	-	-	-	-
1,3-Dichlorobenzene	μg/kg	1	ISO 17025	-	-	-	-	-
p-Isopropyltoluene	μg/kg	1	ISO 17025	-	-	-	-	-
1,2-Dichlorobenzene	μg/kg	1	MCERTS	-	-	-	-	-
1,4-Dichlorobenzene	μg/kg	1	MCERTS	-	-	-	-	-
Butylbenzene	μg/kg	1	MCERTS	-	-	-	-	-
1,2-Dibromo-3-chloropropane	μg/kg	1	ISO 17025	-	-	-	-	-
1,2,4-Trichlorobenzene	μg/kg	1	MCERTS	-	-	-	-	-
Hexachlorobutadiene	μg/kg	1	MCERTS	-	-	-	-	-
1,2,3-Trichlorobenzene	μg/kg	1	ISO 17025	-	-	-	-	-

Lab Sample Number				805241	805242	805243	805244	805245
Sample Reference				TP113	TP113	WS101	WS102A	WS104C
Sample Number				5	1	None Supplied	None Supplied	None Supplied
Depth (m)	2.00	3.00	0.50-0.55	0.00-0.20	0.10-0.20			
Date Sampled	17/08/2017	17/08/2017	16/08/2017	17/08/2017	17/08/2017			
Time Taken	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied			
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
VOCs TICs								
VOCs TICs Compound Name		N/A	NONE	_	_	-	-	_
VOC % Match	%	N/A	NONE	-	-	-	-	-

Lab Sample Number				805241	805242	805243	805244	805245
Sample Reference				TP113	TP113	WS101	WS102A	WS104C
Sample Number				5	1	None Supplied	None Supplied	None Supplied
Depth (m)				2.00	3.00	0.50-0.55	0.00-0.20	0.10-0.20
Date Sampled				17/08/2017	17/08/2017	16/08/2017	17/08/2017	17/08/2017
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
SVOCs								
Aniline	mg/kg	0.1	NONE	-	-	-	-	-
Phenol	mg/kg	0.2	ISO 17025	-	-	-	-	-
2-Chlorophenol	mg/kg	0.1	MCERTS	-	-	-	-	-
Bis(2-chloroethyl)ether	mg/kg	0.2	MCERTS	-	-	-	-	-
1,3-Dichlorobenzene	mg/kg	0.2	MCERTS MCERTS	-	-	-	<u>-</u>	-
1,2-Dichlorobenzene 1,4-Dichlorobenzene	mg/kg mg/kg	0.1	MCERTS			-	-	-
Bis(2-chloroisopropyl)ether	mg/kg	0.1	MCERTS	_	_	_	_	-
2-Methylphenol	mg/kg	0.3	MCERTS	-	-	-	-	-
Hexachloroethane	mg/kg	0.05	MCERTS	-	-	-	-	-
Nitrobenzene	mg/kg	0.3	MCERTS	-	-	-	-	-
4-Methylphenol	mg/kg	0.2	NONE	-	-	-	-	-
Isophorone	mg/kg	0.2	MCERTS	-	-	-	-	-
2-Nitrophenol	mg/kg	0.3	MCERTS	-	-	-	-	-
2,4-Dimethylphenol	mg/kg	0.3	MCERTS	-	-	-	-	-
Bis(2-chloroethoxy)methane 1,2,4-Trichlorobenzene	mg/kg	0.3	MCERTS	-	-	-	<u>-</u>	-
Naphthalene	mg/kg mg/kg	0.05	MCERTS MCERTS			-	-	-
2,4-Dichlorophenol	mg/kg	0.03	MCERTS	-	_	-	-	-
4-Chloroaniline	mg/kg	0.1	NONE	-	-	-	-	-
Hexachlorobutadiene	mg/kg	0.1	MCERTS	-	-	-	-	-
4-Chloro-3-methylphenol	mg/kg	0.1	NONE	-	-	-	-	-
2,4,6-Trichlorophenol	mg/kg	0.1	MCERTS	-	-	-	-	-
2,4,5-Trichlorophenol	mg/kg	0.2	MCERTS	-	-	-	-	-
2-Methylnaphthalene	mg/kg	0.1	NONE	-	-	-	-	-
2-Chloronaphthalene	mg/kg	0.1	MCERTS	-	<u>-</u>	-	<u>-</u>	-
Dimethylphthalate 2,6-Dinitrotoluene	mg/kg mg/kg	0.1	MCERTS MCERTS	-	-	-	-	-
Acenaphthylene	mg/kg	0.05	MCERTS	-	_	-		
Acenaphthene	mg/kg	0.05	MCERTS	-	_	-	-	_
2,4-Dinitrotoluene	mg/kg	0.2	MCERTS	-	-	-	-	-
Dibenzofuran	mg/kg	0.2	MCERTS	-	-	-	-	-
4-Chlorophenyl phenyl ether	mg/kg	0.3	ISO 17025	-	-	-	-	-
Diethyl phthalate	mg/kg	0.2	MCERTS	-	-	-	-	-
4-Nitroaniline	mg/kg	0.2	MCERTS	-	-	-	-	-
Fluorene	mg/kg	0.05	MCERTS	-	-	-	-	-
Azobenzene Bromophenyl phenyl ether	mg/kg	0.3	MCERTS MCERTS	-	<u>-</u>	-	<u>-</u>	-
Hexachlorobenzene	mg/kg mg/kg	0.2	MCERTS	-	-	-	-	-
Phenanthrene	mg/kg	0.05	MCERTS	_	-	_	-	-
Anthracene	mg/kg	0.05	MCERTS	-	-	-	-	-
Carbazole	mg/kg	0.3	MCERTS	-	-	-	-	-
Dibutyl phthalate	mg/kg	0.2	MCERTS	-	-	-	-	-
Anthraquinone	mg/kg	0.3	MCERTS	-	-	-	-	-
Fluoranthene	mg/kg	0.05	MCERTS	-	-	-	-	-
Pyrene	mg/kg	0.05	MCERTS	-	-	-	-	-
Butyl benzyl phthalate	mg/kg	0.3	ISO 17025	-	-	-	-	-
Benzo(a)anthracene Chrysene	mg/kg mg/kg	0.05	MCERTS MCERTS	-	<u>-</u>	-	<u>-</u>	-
Benzo(b)fluoranthene	mg/kg mg/kg	0.05	MCERTS	-	-	-	-	-
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	_	-	_	-	-
Benzo(a)pyrene	mg/kg	0.05	MCERTS	-	-	-	-	-
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	-	-	-	-	-
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	-	-	-	-	-
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	-	-	-	-	-

Lab Sample Number				805241	805242	805243	805244	805245
Sample Reference				TP113	TP113	WS101	WS102A	WS104C
Sample Number				5	1	None Supplied	None Supplied	None Supplied
•				2.00	3.00	0.50-0.55	0.00-0.20	0.10-0.20
Depth (m)				17/08/2017	17/08/2017	16/08/2017	17/08/2017	17/08/2017
Date Sampled Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
тіте такеп	ı	1	ı	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
SVOCs TICs]				
SVOCs TICs Compound Name		N/A	NONE	-	-	-	-	-
SVOC % Match	%	N/A	NONE	-	-	-	-	-
SVOCs TICs Compound Name		N/A	NONE	-	-	-	-	-
SVOC % Match	%	N/A	NONE	-	-	-	-	-
SVOCs TICs Compound Name		N/A	NONE	-	-	-	-	=
SVOC % Match	%	N/A	NONE	-	-	-	-	-
SVOCs TICs Compound Name		N/A	NONE	-	-	-	-	-
SVOC % Match	%	N/A	NONE	-	-	-	-	-
SVOCs TICs Compound Name		N/A	NONE	_	_	_	_	_
SVOC % Match	%	N/A	NONE	-	-	_	_	_
SVOCs TICs Compound Name		N/A	NONE	-	-	-	-	-
SVOC % Match	%	N/A	NONE	-	-	-	-	-
SVOCs TICs Compound Name		N/A	NONE	-	-	-	-	-
SVOC % Match	%	N/A	NONE	-	-	-	-	-
SVOCs TICs Compound Name		N/A	NONE	-	-	-	-	-
SVOC % Match	%	N/A	NONE	-	-	-	-	-
SVOCs TICs Compound Name		N/A	NONE	-	-	-	-	-
SVOC % Match	%	N/A	NONE	-	-	-	-	-
CL/CCo TICe Companyed Name		N1/A	NONE	-				
SVOCs TICs Compound Name	0,	N/A	NONE	<u> </u>	-	-	-	-
SVOC % Match	%	N/A	NONE	-	-	-	-	-

Lab Sample Number				805246	805247	805248	805249	805250
Sample Reference				WS104C	WS109	WS110	WS110	WS111
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				1.80-1.90	0.10-0.20	0.05-0.15	0.50-0.55	0.48-0.60
Date Sampled Time Taken				17/08/2017 None Supplied	16/08/2017 None Supplied	16/08/2017 None Supplied	16/08/2017 None Supplied	17/08/2017 None Supplied
Time Taken			1	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	42	< 0.1	< 0.1	< 0.1	68
Moisture Content	%	N/A	NONE	13	12	13	11	8.3
Total mass of sample received	kg	0.001	NONE	1.5	2.0	1.2	1.6	2.0
rotal mass of sample reserved	19	0.001	110112	1.0	2.0		2.0	2.0
Asbestos in Soil	Туре	N/A	ISO 17025	Not-detected	Not-detected	Not-detected	Not-detected	Not-detected
Consul Insuranias								
General Inorganics pH - Automated	nU Hait-	N/A	MCEDIC	8.1	7.9	7.0	7.1	10.0
pn - Automated Total Cyanide	pH Units	N/A 1	MCERTS MCERTS		7.9 < 1	7.0 < 1		
,	mg/kg		MCERTS	< 1			< 1	< 1
Free Cyanide Water Soluble SO4 16hr extraction (2:1 Leachate	mg/kg	1	MCERTS	< 1	< 1	< 1	< 1	< 1
Equivalent)	g/l	0.00125	MCERTS	0.026	0.012	0.016	0.012	0.18
Fraction Organic Carbon (FOC)	N/A	0.001	NONE	0.0024	0.010	0.049	0.0097	0.022
Total Phenols			T					
Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Speciated PAHs								
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	0.11	0.14	< 0.05	0.43
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	0.57	0.14	< 0.05	< 0.05
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	0.37	< 0.05	< 0.05	< 0.05
Fluorene	mg/kg	0.05	MCERTS	< 0.05	0.47	< 0.05	< 0.05	0.19
Phenanthrene	mg/kg	0.05	MCERTS	< 0.05	4.2	0.97	< 0.05	0.67
Anthracene	mg/kg	0.05	MCERTS	< 0.05	1.7	0.26	< 0.05	0.13
Fluoranthene	mg/kg	0.05	MCERTS	< 0.05	12	4.4	< 0.05	1.1
Pyrene	mg/kg	0.05	MCERTS	< 0.05	10	3.4	< 0.05	0.88
Benzo(a)anthracene	mg/kg	0.05	MCERTS	< 0.05	8.4	2.3	< 0.05	0.89
Chrysene	mg/kg	0.05	MCERTS	< 0.05	3.8	1.2	< 0.05	0.46
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	9.8	3.5	< 0.05	1.0
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	3.0	1.1	< 0.05	0.50
Benzo(a)pyrene	mg/kg	0.05	MCERTS	< 0.05	8.3	2.9	< 0.05	1.0
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	< 0.05	4.2	1.5	< 0.05	0.53
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	< 0.05	0.79	0.27	< 0.05	0.10
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05	3.5	1.4	< 0.05	0.50
				****		•	****	
Total PAH	1					•		
Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	< 0.80	70.8	23.5	< 0.80	8.45
Arcanic (agua regia extractable)	malka	1	MCERTS	14	15	14	5.5	16
Arsenic (aqua regia extractable) Boron (water soluble)	mg/kg mg/kg	0.2	MCERTS	0.6	15 0.9	14 4.3	5.5 1.2	2.3
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	< 0.2	0.3	< 0.2	< 0.2
Chromium (hexavalent)	mg/kg mg/kg	4	MCERTS	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	22	32	23	18	19
Copper (aqua regia extractable)	mg/kg	1	MCERTS	8.5	11	61	9.7	64
Copper (aqua regia extractable) Lead (aqua regia extractable)	mg/kg mg/kg	1	MCERTS	11	60	340	27	64
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
Nickel (aqua regia extractable)	mg/kg mg/kg	1	MCERTS	< 0.3 22	< 0.3 27	< 0.3 22	< 0.3 5.6	< 0.3 29
Selenium (aqua regia extractable)	mg/kg mg/kg	1	MCERTS	1.1	< 1.0	< 1.0	< 1.0	< 1.0
Zinc (aqua regia extractable)		1		29	< 1.0 71	240	< 1.0 28	140
ZITIC (aqua regia extractable)	mg/kg	<u> </u>	MCERTS	29	/1	Z 1 U	۷8	1 4 0

TPH-CWG - Aromatic >EC5 - EC7

TPH-CWG - Aromatic >EC7 - EC8

TPH-CWG - Aromatic >EC8 - EC10

TPH-CWG - Aromatic >EC10 - EC12

TPH-CWG - Aromatic >EC12 - EC16

TPH-CWG - Aromatic >EC16 - EC21

TPH-CWG - Aromatic >EC21 - EC35

TPH-CWG - Aromatic (EC5 - EC35)

Lab Sample Number				805246	805247	805248	805249	805250
Sample Reference				WS104C	WS109	WS110	WS110	WS111
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				1.80-1.90	0.10-0.20	0.05-0.15	0.50-0.55	0.48-0.60
Date Sampled				17/08/2017	16/08/2017	16/08/2017	16/08/2017	17/08/2017
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Monoaromatics								
Benzene	ug/kg	1	MCERTS	-	< 1.0	< 1.0	-	< 1.0
Toluene	μg/kg	1	MCERTS	-	< 1.0	< 1.0	-	< 1.0
Ethylbenzene	μg/kg	1	MCERTS	-	< 1.0	< 1.0	-	< 1.0
p & m-xylene	μg/kg	1	MCERTS	-	< 1.0	< 1.0	-	< 1.0
o-xylene	μg/kg	1	MCERTS	-	< 1.0	< 1.0	-	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	1	MCERTS	-	< 1.0	< 1.0	-	< 1.0
Petroleum Hydrocarbons Petroleum Range Organics (C6 - C10)	mg/kg	0.1	MCERTS	-	< 0.1	< 0.1	-	< 0.1
TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.001	MCERTS	-	< 0.001	< 0.001	-	< 0.001
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.001	MCERTS	-	< 0.001	< 0.001	-	< 0.001
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.001	MCERTS	-	< 0.001	< 0.001	-	< 0.001
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	-	< 1.0	1.3	-	< 1.0
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	-	< 2.0	< 2.0	-	12
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	-	< 8.0	< 8.0	-	47
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	-	8.4	50	-	130
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	_	10	58	_	180

MCERTS

MCERTS

MCERTS

MCERTS

MCERTS

MCERTS

MCERTS

MCERTS

< 0.001

< 0.001

< 0.001

< 1.0

7.1

70

230

< 0.001

< 0.001

< 0.001

< 1.0

3.2

25

110

140

0.001

0.001

0.001

10

10

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

< 0.001

< 0.001

< 0.001

2.3

18

22

Lab Sample Number				805246	805247	805248	805249	805250
Sample Reference				WS104C	WS109	WS110	WS110	WS111
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				1.80-1.90	0.10-0.20	0.05-0.15	0.50-0.55	0.48-0.60
Date Sampled				17/08/2017	16/08/2017	16/08/2017	16/08/2017	17/08/2017
Time Taken	1			None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
VOCs								
Chloromethane	μg/kg	1	ISO 17025	_	_	_	_	_
Chloroethane	μg/kg	1	NONE	-	-	-	-	-
Bromomethane	μg/kg	1	ISO 17025	-	-	-	-	-
Vinyl Chloride	μg/kg	1	NONE	-	-	-	-	_
Trichlorofluoromethane	μg/kg	1	NONE	-	-	-	-	-
1,1-Dichloroethene	μg/kg	1	NONE	-	-	-	-	-
1,1,2-Trichloro 1,2,2-Trifluoroethane	μg/kg	1	ISO 17025	-	-	-	-	-
Cis-1,2-dichloroethene	μg/kg	1	MCERTS	-	-	-	-	-
MTBE (Methyl Tertiary Butyl Ether) 1,1-Dichloroethane	μg/kg μg/kg	1	MCERTS MCERTS	-	<u>-</u>	-	-	-
2,2-Dichloropropane	μg/kg μg/kg	1	MCERTS	<u>-</u>	-	<u>-</u>	-	-
Z,Z-Dichloropropane Trichloromethane	μg/kg μg/kg	1	MCERTS	-	-	-	-	-
1,1,1-Trichloroethane	μg/kg μg/kg	1	MCERTS	_	-	-	_	-
1,2-Dichloroethane	μg/kg	1	MCERTS	-	-	-	-	-
1,1-Dichloropropene	μg/kg	1	MCERTS	-	-	-	-	-
Trans-1,2-dichloroethene	μg/kg	1	NONE	-	-	-	-	-
Benzene	μg/kg	1	MCERTS	-	-	-	-	-
Tetrachloromethane	μg/kg	1	MCERTS	-	-	-	-	-
1,2-Dichloropropane	μg/kg	1	MCERTS	-	-	-	-	-
Trichloroethene	μg/kg	1	MCERTS	-	-	-	<u>-</u>	-
Dibromomethane Bromodichloromethane	μg/kg μg/kg	1	MCERTS MCERTS	-	<u> </u>	-	-	-
Cis-1,3-dichloropropene	μg/kg μg/kg	1	ISO 17025	-				
Trans-1,3-dichloropropene	μg/kg	1	ISO 17025	-	_	-	-	_
Toluene	μg/kg	1	MCERTS	-	-	-	-	-
1,1,2-Trichloroethane	μg/kg	1	MCERTS	-	-	-	-	-
1,3-Dichloropropane	μg/kg	1	ISO 17025	-	-	-	-	-
Dibromochloromethane	μg/kg	1	ISO 17025	-	-	-	-	-
Tetrachloroethene	μg/kg	1	NONE	-	-	-	-	-
1,2-Dibromoethane	μg/kg	1	ISO 17025	-	-	-	-	-
Chlorobenzene	μg/kg "	1	MCERTS	-	-	-	-	-
1,1,1,2-Tetrachloroethane Ethylbenzene	μg/kg	1	MCERTS MCERTS	-	-	-	<u>-</u>	-
p & m-Xylene	μg/kg μg/kg	1	MCERTS	-		-		_
Styrene	μg/kg μg/kg	1	MCERTS	-	_	_	-	_
Tribromomethane	μg/kg μg/kg	1	NONE	-	-	-	-	-
o-Xylene	μg/kg	1	MCERTS	-	-	-	-	
1,1,2,2-Tetrachloroethane	μg/kg	1	MCERTS	-	-	-	-	-
Isopropylbenzene	μg/kg	1	MCERTS	-	-	-	-	-
Bromobenzene	μg/kg	1	MCERTS	-	-	-	-	-
n-Propylbenzene	μg/kg	1	ISO 17025	-	-	-	-	-
2-Chlorotoluene	μg/kg	1	MCERTS	-	-	-	-	-
4-Chlorotoluene	μg/kg	1	MCERTS ISO 17025	- -	-	-	- -	<u>-</u>
1,3,5-Trimethylbenzene tert-Butylbenzene	μg/kg μα/kg	1	MCERTS	-	<u>-</u>	-	-	-
1,2,4-Trimethylbenzene	μg/kg μg/kg	1	ISO 17025	-	-	-	-	-
sec-Butylbenzene	μg/kg μg/kg	1	MCERTS	-	-	-	-	-
1,3-Dichlorobenzene	µg/kg	1	ISO 17025	-	-	-	-	-
p-Isopropyltoluene	μg/kg	1	ISO 17025	-	-	-	-	-
1,2-Dichlorobenzene	μg/kg	1	MCERTS	-	-	-	-	-
1,4-Dichlorobenzene	μg/kg	1	MCERTS	-	-	-	-	-
Butylbenzene	μg/kg	1	MCERTS	-	-	-	-	-
1,2-Dibromo-3-chloropropane	μg/kg "	1	ISO 17025	-	-	-	-	-
1,2,4-Trichlorobenzene	μg/kg	1	MCERTS	-	-	-	-	-
Hexachlorobutadiene 1,2,3-Trichlorobenzene	μg/kg	1	MCERTS ISO 17025	-	-	-	<u>-</u>	-
T ₁ Z ₁ J-THCHOLODEHZEHE	μg/kg		130 1/025	-		_		

Lab Sample Number				805246	805247	805248	805249	805250
Sample Reference				WS104C	WS109	WS110	WS110	WS111
Sample Number	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied			
Depth (m)	1.80-1.90	0.10-0.20	0.05-0.15	0.50-0.55	0.48-0.60			
Date Sampled	17/08/2017	16/08/2017	16/08/2017	16/08/2017	17/08/2017			
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
VOCs TICs								
VOCs TICs Compound Name		N/A	NONE	-	-	-	-	-
VOC % Match	%	N/A	NONE	-	-	-	-	-

Lab Sample Number				805246	805247	805248	805249	805250
Sample Reference				WS104C	WS109	WS110	WS110	WS111
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				1.80-1.90	0.10-0.20	0.05-0.15	0.50-0.55	0.48-0.60
Date Sampled				17/08/2017	16/08/2017	16/08/2017	16/08/2017	17/08/2017
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
SVOCs								
Aniline	mg/kg	0.1	NONE	-	-	-	-	-
Phenol	mg/kg	0.2	ISO 17025	-	-	-	-	-
2-Chlorophenol	mg/kg	0.1	MCERTS	-	-	-	-	-
Bis(2-chloroethyl)ether	mg/kg	0.2	MCERTS	-	-	-	-	-
1,3-Dichlorobenzene	mg/kg	0.2	MCERTS	-	-	-	-	-
1,2-Dichlorobenzene	mg/kg	0.1	MCERTS	-	-	-	-	-
1,4-Dichlorobenzene Bis(2-chloroisopropyl)ether	mg/kg mg/kg	0.2	MCERTS MCERTS	-	<u>-</u>	-	<u>-</u>	-
2-Methylphenol	mg/kg mg/kg	0.1	MCERTS	-	-	-	-	-
Hexachloroethane	mg/kg	0.05	MCERTS	-	-	-	_	-
Nitrobenzene	mg/kg	0.3	MCERTS	-	-	-	-	-
4-Methylphenol	mg/kg	0.2	NONE	-	-	-	-	-
Isophorone	mg/kg	0.2	MCERTS	-	-	-	-	-
2-Nitrophenol	mg/kg	0.3	MCERTS	-	-	-	-	-
2,4-Dimethylphenol	mg/kg	0.3	MCERTS	-	-	-	-	-
Bis(2-chloroethoxy)methane	mg/kg	0.3	MCERTS	-	-	-	-	-
1,2,4-Trichlorobenzene	mg/kg	0.3	MCERTS	-	-	-	-	-
Naphthalene	mg/kg	0.05	MCERTS	-	-	-	-	-
2,4-Dichlorophenol	mg/kg	0.3	MCERTS	-	-	-	-	-
4-Chloroaniline Hexachlorobutadiene	mg/kg mg/kg	0.1	NONE MCERTS	-	<u>-</u> -	-	<u>-</u>	-
4-Chloro-3-methylphenol	mg/kg	0.1	NONE	-		-	-	_
2,4,6-Trichlorophenol	mg/kg	0.1	MCERTS	-	_	-	-	_
2,4,5-Trichlorophenol	mg/kg	0.2	MCERTS	_	_	_	-	_
2-Methylnaphthalene	mg/kg	0.1	NONE	-	-	-	-	-
2-Chloronaphthalene	mg/kg	0.1	MCERTS	-	-	-	-	-
Dimethylphthalate	mg/kg	0.1	MCERTS	-	-	-	-	-
2,6-Dinitrotoluene	mg/kg	0.1	MCERTS	-	-	-	-	-
Acenaphthylene	mg/kg	0.05	MCERTS	-	-	-	-	-
Acenaphthene	mg/kg	0.05	MCERTS	-	-	-	-	-
2,4-Dinitrotoluene	mg/kg	0.2	MCERTS	-	-	-	-	-
Dibenzofuran 4-Chlorophenyl phenyl ether	mg/kg mg/kg	0.2	MCERTS ISO 17025	-	<u>-</u>	-	<u>-</u>	-
Diethyl phthalate	mg/kg	0.2	MCERTS	-	-	-	-	_
4-Nitroaniline	mg/kg	0.2	MCERTS	-	-	-	-	-
Fluorene	mg/kg	0.05	MCERTS	-	-	-	-	-
Azobenzene	mg/kg	0.3	MCERTS	-	-	-	-	
Bromophenyl phenyl ether	mg/kg	0.2	MCERTS	-	-	-	-	-
Hexachlorobenzene	mg/kg	0.3	MCERTS	-	-	-	-	-
Phenanthrene	mg/kg	0.05	MCERTS	-	-	-	-	-
Anthracene	mg/kg	0.05	MCERTS	-	-	-	-	-
Carbazole	mg/kg	0.3	MCERTS	-	-	-	-	-
Dibutyl phthalate	mg/kg	0.2	MCERTS	-	<u>-</u> -	-	- -	-
Anthraquinone Fluoranthene	mg/kg mg/kg	0.3	MCERTS MCERTS	<u>-</u>	-	-	-	-
Pyrene	mg/kg	0.05	MCERTS	-	-	-	-	-
Butyl benzyl phthalate	mg/kg	0.03	ISO 17025	-	-	-	-	-
Benzo(a)anthracene	mg/kg	0.05	MCERTS	-	-	-	-	-
Chrysene	mg/kg	0.05	MCERTS	-	-	-	-	-
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	-	-	-	-	-
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	-	-	-	-	-
Benzo(a)pyrene	mg/kg	0.05	MCERTS	-	-	-	-	-
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	-	-	-	-	-
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	-	-	-	-	-
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	-	-	-	-	-

Lab Sample Number				805246	805247	805248	805249	805250
Sample Reference				WS104C	WS109	WS110	WS110	WS111
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				1.80-1.90	0.10-0.20	0.05-0.15	0.50-0.55	0.48-0.60
Date Sampled				17/08/2017	16/08/2017	16/08/2017	16/08/2017	17/08/2017
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
SVOCs TICs]				
SVOCs TICs Compound Name		N/A	NONE	-	-	-	-	-
SVOC % Match	%	N/A	NONE	-	-	-	-	-
SVOCs TICs Compound Name		N/A	NONE	-	-	-	-	-
SVOC % Match	%	N/A	NONE	-	-	-	-	-
SVOCs TICs Compound Name SVOC % Match	%	N/A N/A	NONE NONE	-	-	-	-	-
SVOC % Malcii	90	IN/A	NONE	_	-	-	-	-
SVOCs TICs Compound Name		N/A	NONE	-	-	-	-	-
SVOC % Match	%	N/A	NONE	-	-	-	-	-
SVOCs TICs Compound Name		N/A	NONE	-	-	-	-	-
SVOC % Match	%	N/A	NONE	-	-	-	-	-
SVOCs TICs Compound Name SVOC % Match	%	N/A N/A	NONE NONE	-	-	-	-	-
SVOC % Malcii	90	IN/A	NONE	_	-	-	-	-
SVOCs TICs Compound Name		N/A	NONE	-	-	-	-	-
SVOC % Match	%	N/A	NONE	-	-	-	-	-
SVOCs TICs Compound Name		N/A	NONE	-	-	-	-	-
SVOC % Match	%	N/A	NONE	-	-	-	-	-
SVOCs TICs Compound Name		N/A	NONE	-	-	-	-	-
SVOC % Match	%	N/A	NONE	-	-	-	-	-
				-				
SVOCs TICs Compound Name		N/A	NONE		-	-	-	-
SVOC % Match	%	N/A	NONE	-	-	-	-	-

Lab Camula Numbau				005351		T		1
Lab Sample Number				805251	 	 	ļ	
Sample Reference				WS112				
Sample Number				None Supplied				
Depth (m)				0.50-0.55				
Date Sampled				16/08/2017				
Time Taken				None Supplied				
		_	Accreditation Status					
Analytical Parameter	_	Limit of detection	St					
(Soil Analysis)	Units	ect #	at dit					
(Soli Allalysis)	v	할 역	atio					
			š					
Stone Content	%	0.1	NONE	< 0.1				
Moisture Content	%	N/A	NONE	12				
Total mass of sample received	kg	0.001	NONE	1.6				
Asbestos in Soil	Type	N/A	ISO 17025	Not-detected				
					•	-		
General Inorganics								
pH - Automated	pH Units	N/A	MCERTS	7.5	<u> </u>	<u> </u>		
Total Cyanide	mg/kg	1	MCERTS	< 1				
Free Cyanide	mg/kg	1	MCERTS	< 1				
Water Soluble SO4 16hr extraction (2:1 Leachate								
Equivalent)	g/l	0.00125	MCERTS	0.013				
Fraction Organic Carbon (FOC)	N/A	0.001	NONE	0.0045	<u> </u>	<u> </u>	<u> </u>	
Total Phenols								
Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0				
Speciated PAHs								
Naphthalene	mg/kg	0.05	MCERTS	< 0.05				
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05				
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05				
Fluorene	mg/kg	0.05	MCERTS	< 0.05				
Phenanthrene	mg/kg	0.05	MCERTS	< 0.05				
Anthracene	mg/kg	0.05	MCERTS	< 0.05				
Fluoranthene	mg/kg	0.05	MCERTS	< 0.05				
Pyrene	mg/kg	0.05	MCERTS	< 0.05				
Benzo(a)anthracene	mg/kg	0.05	MCERTS	< 0.05				
Chrysene	mg/kg	0.05	MCERTS	< 0.05				
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	< 0.05				
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	< 0.05				
Benzo(a)pyrene	mg/kg	0.05	MCERTS	< 0.05				
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	< 0.05				
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	< 0.05				
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05	<u> </u>	<u> </u>		
Total PAH		•						
Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	< 0.80				
Heavy Metals / Metalloids		•			•	•		
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	1.1				
Boron (water soluble)	mg/kg	0.2	MCERTS	0.4				
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2				
Chromium (hexavalent)	mg/kg	4	MCERTS	< 4.0				
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	21				
Copper (aqua regia extractable)	mg/kg	1	MCERTS	9.7				
Lead (aqua regia extractable)	mg/kg	1	MCERTS	14				
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3				
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	14				
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0				
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	40				
					-	-	-	-

TPH-CWG - Aromatic >EC5 - EC7

TPH-CWG - Aromatic >EC7 - EC8

TPH-CWG - Aromatic >EC8 - EC10

TPH-CWG - Aromatic >EC10 - EC12

TPH-CWG - Aromatic >EC12 - EC16

TPH-CWG - Aromatic >EC16 - EC21

TPH-CWG - Aromatic >EC21 - EC35

TPH-CWG - Aromatic (EC5 - EC35)

Lab Sample Number				805251			
Sample Reference				WS112			
Sample Number				None Supplied			
Depth (m)				0.50-0.55			
Date Sampled				16/08/2017			
Time Taken	Time Taken						
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status				
Monoaromatics							
Benzene	ug/kg	1	MCERTS	-			
Toluene	μg/kg	1	MCERTS	-			
Ethylbenzene	μg/kg	1	MCERTS	-			
p & m-xylene	μg/kg	1	MCERTS	-			
o-xylene	μg/kg	1	MCERTS	-			
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	1	MCERTS	-			
Petroleum Hydrocarbons Petroleum Range Organics (C6 - C10)	mg/kg	0.1	MCERTS	-			
TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.001	MCERTS	-			
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.001	MCERTS	-			
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.001	MCERTS	-			
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	-			
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	-			
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	-			
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	-			
TPH-CWG - Aliphatic (EC5 - EC35)	PH-CWG - Aliphatic (EC5 - EC35) mg/kg 10 MCERTS						

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

0.001

0.001

0.001

10

10

MCERTS

MCERTS

MCERTS

MCERTS

MCERTS

MCERTS

MCERTS

MCERTS

Lab Sample Number				805251		
Sample Reference				WS112		
Sample Number				None Supplied		
Depth (m)				0.50-0.55		
Date Sampled				16/08/2017		
Time Taken				None Supplied		
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status			
VOCs	1					
Chloromethane	μg/kg	1	ISO 17025	_		
Chloroethane	μg/kg	1	NONE	-		
Bromomethane	μg/kg	1	ISO 17025	-		
Vinyl Chloride	μg/kg	1	NONE	-		
Trichlorofluoromethane	μg/kg	1	NONE	-		
1,1-Dichloroethene	μg/kg	1	NONE	-		
1,1,2-Trichloro 1,2,2-Trifluoroethane	μg/kg	1	ISO 17025	-		
Cis-1,2-dichloroethene	μg/kg	1	MCERTS	-		
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	1	MCERTS	-		
1,1-Dichloroethane	μg/kg "	1	MCERTS	-		
2,2-Dichloropropane	μg/kg	1	MCERTS	-		
Trichloromethane	μg/kg	1	MCERTS	-		
1,1,1-Trichloroethane 1,2-Dichloroethane	μg/kg	1	MCERTS MCERTS	-		
1,1-Dichloropropene	μg/kg	1	MCERTS	-		
Trans-1,2-dichloroethene	μg/kg	1	NONE	-		
Benzene	μg/kg μg/kg	1	MCERTS	-		
Tetrachloromethane	μg/kg	1	MCERTS	-		
1.2-Dichloropropane	μg/kg	1	MCERTS	-		
Trichloroethene	μg/kg	1	MCERTS	-		
Dibromomethane	μg/kg	1	MCERTS	-		
Bromodichloromethane	μg/kg	1	MCERTS	_		
Cis-1,3-dichloropropene	μg/kg	1	ISO 17025	-		
Trans-1,3-dichloropropene	μg/kg	1	ISO 17025	-		
Toluene	μg/kg	1	MCERTS	-		
1,1,2-Trichloroethane	μg/kg	1	MCERTS	-		
1,3-Dichloropropane	μg/kg	1	ISO 17025	ı		
Dibromochloromethane	μg/kg	1	ISO 17025	-		
Tetrachloroethene	μg/kg	1	NONE	-		
1,2-Dibromoethane	μg/kg	1	ISO 17025	-		
Chlorobenzene	μg/kg	1	MCERTS	-		
1,1,1,2-Tetrachloroethane	μg/kg	1	MCERTS	-		
Ethylbenzene	μg/kg	1	MCERTS	-		
p & m-Xylene	μg/kg	1	MCERTS	-		
Styrene Tribromomethane	μg/kg	1	MCERTS	-		
o-Xylene	μg/kg μg/kg	1	NONE MCERTS	-		
1,1,2,2-Tetrachloroethane	μg/kg μg/kg	1	MCERTS	-		
Isopropylbenzene	μg/kg μg/kg	1	MCERTS	-		
Bromobenzene	μg/kg	1	MCERTS	_		
n-Propylbenzene	μg/kg μg/kg	1	ISO 17025	-		
2-Chlorotoluene	μg/kg	1	MCERTS	-		
4-Chlorotoluene	μg/kg	1	MCERTS	-		
1,3,5-Trimethylbenzene	μg/kg	1	ISO 17025	-		
tert-Butylbenzene	μg/kg	1	MCERTS	-		
1,2,4-Trimethylbenzene	μg/kg	1	ISO 17025	-		
sec-Butylbenzene	μg/kg	1	MCERTS	-		
1,3-Dichlorobenzene	μg/kg	1	ISO 17025	-		
p-Isopropyltoluene	μg/kg "	1	ISO 17025	-		
1,2-Dichlorobenzene	μg/kg	1	MCERTS	-		
1,4-Dichlorobenzene	μg/kg	1	MCERTS	-		
Butylbenzene	μg/kg	1	MCERTS ISO 17025	-		
1,2-Dibromo-3-chloropropane 1,2,4-Trichlorobenzene	μg/kg	1	MCERTS	-		
1,2,4-1 richiorobenzene Hexachlorobutadiene	μg/kg μg/kg	1	MCERTS	-		
1,2,3-Trichlorobenzene	μg/kg μg/kg	1	ISO 17025	-		
1/2/3 THE HOLODERICE IC	µg/Ng		130 1/023	-		I.

		Cample Number					T	
Lab Sample Number				805251				
Sample Reference				WS112				
Sample Number	None Supplied							
Depth (m)	0.50-0.55							
Date Sampled				16/08/2017				
Time Taken	None Supplied							
Analytical Parameter (Soil Analysis)	Accred Standard Un Standard St							
VOCs TICs								
VOCs TICs Compound Name		N/A	NONE	-				
VOC % Match	%	N/A	NONE	-				

Lab Sample Number				805251			
Sample Reference				WS112			
Sample Number				None Supplied			
Depth (m)				0.50-0.55			
Date Sampled				16/08/2017			
Time Taken				None Supplied			
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status				
SVOCs			_				
Aniline	/l	0.1	NONE	_	I	I	
Phenol	mg/kg mg/kg	0.1	ISO 17025	-			
2-Chlorophenol	mg/kg	0.2	MCERTS	-			
Bis(2-chloroethyl)ether	mg/kg	0.2	MCERTS	-			
1,3-Dichlorobenzene	mg/kg	0.2	MCERTS	_			
1,2-Dichlorobenzene	mg/kg	0.1	MCERTS	-			
1,4-Dichlorobenzene	mg/kg	0.2	MCERTS	-			
Bis(2-chloroisopropyl)ether	mg/kg	0.1	MCERTS	-			
2-Methylphenol	mg/kg	0.3	MCERTS	-			
Hexachloroethane	mg/kg	0.05	MCERTS	-	 		
Nitrobenzene	mg/kg	0.3	MCERTS	-			
4-Methylphenol	mg/kg	0.2	NONE	-			
Isophorone	mg/kg	0.2	MCERTS	-			
2-Nitrophenol	mg/kg	0.3	MCERTS	-			
2,4-Dimethylphenol	mg/kg	0.3	MCERTS	-			
Bis(2-chloroethoxy)methane	mg/kg	0.3	MCERTS	-			
1,2,4-Trichlorobenzene	mg/kg	0.3	MCERTS	-			
Naphthalene	mg/kg	0.05	MCERTS	-			
2,4-Dichlorophenol	mg/kg	0.3	MCERTS	-			
4-Chloroaniline	mg/kg	0.1	NONE	-			
Hexachlorobutadiene	mg/kg	0.1	MCERTS	-			
4-Chloro-3-methylphenol	mg/kg	0.1	NONE	-			
2,4,6-Trichlorophenol	mg/kg	0.1	MCERTS	-			
2,4,5-Trichlorophenol 2-Methylnaphthalene	mg/kg	0.2	MCERTS NONE	-			
2-Chloronaphthalene	mg/kg mg/kg	0.1	MCERTS	-			
Dimethylphthalate	mg/kg	0.1	MCERTS				
2,6-Dinitrotoluene	mg/kg	0.1	MCERTS	-			
Acenaphthylene	mg/kg	0.05	MCERTS	_			
Acenaphthene	mg/kg	0.05	MCERTS	-			
2,4-Dinitrotoluene	mg/kg	0.2	MCERTS	-			
Dibenzofuran	mg/kg	0.2	MCERTS	-			
4-Chlorophenyl phenyl ether	mg/kg	0.3	ISO 17025	-			
Diethyl phthalate	mg/kg	0.2	MCERTS	-			
4-Nitroaniline	mg/kg	0.2	MCERTS	-			
Fluorene	mg/kg	0.05	MCERTS	-			
Azobenzene	mg/kg	0.3	MCERTS	-			
Bromophenyl phenyl ether	mg/kg	0.2	MCERTS	-			
Hexachlorobenzene	mg/kg	0.3	MCERTS	-			
Phenanthrene	mg/kg	0.05	MCERTS	-			
Anthracene	mg/kg	0.05	MCERTS	-			
Carbazole	mg/kg	0.3	MCERTS	-			
Dibutyl phthalate	mg/kg	0.2	MCERTS	-			
Anthraquinone	mg/kg	0.3	MCERTS	-			
Fluoranthene Pyrene	mg/kg mg/kg	0.05	MCERTS MCERTS	-			
Butyl benzyl phthalate	mg/кg mg/kg	0.05	ISO 17025	-			
Benzo(a)anthracene	mg/kg	0.05	MCERTS	-			
Chrysene	mg/kg	0.05	MCERTS	-			
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	-			
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	_			
Benzo(a)pyrene	mg/kg	0.05	MCERTS	-			
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	-			
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	-			
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	-			

Lab Sample Number				805251		
Sample Reference				WS112		
Sample Number				None Supplied		
Depth (m)				0.50-0.55		
Date Sampled				16/08/2017		
Time Taken				None Supplied		
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status			
SVOCs TICs				_		
SVOCs TICs Compound Name		N/A	NONE	-		
SVOC % Match	%	N/A	NONE	-		
SVOCs TICs Compound Name		N/A	NONE	-		
SVOC % Match	%	N/A	NONE	-		
SVOCs TICs Compound Name		N/A	NONE	-		
SVOC % Match	%	N/A	NONE	-		
SVOCs TICs Compound Name SVOC % Match	%	N/A N/A	NONE NONE	-		
SVOC 76 Match	%	IN/A	INOINE	-		
SVOCs TICs Compound Name		N/A	NONE	_		
SVOC % Match	%	N/A	NONE	-		
SVOCs TICs Compound Name	70	N/A	NONE	_		
SVOC % Match	%	N/A	NONE	-		
SVOCs TICs Compound Name		N/A	NONE	-		
SVOC % Match	%	N/A	NONE	-		
SVOCs TICs Compound Name		N/A	NONE	-	 	
SVOC % Match	%	N/A	NONE	-		
SVOCs TICs Compound Name		N/A	NONE	-		
SVOC % Match	%	N/A	NONE	-		
				-		
SVOCs TICs Compound Name		N/A	NONE			
SVOC % Match	%	N/A	NONE	-		

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
805231	TP101	3	0.20	Brown clay and loam with vegetation.
805232	TP102	3	0.30	Light brown loam and clay with vegetation.
805233	TP104	6	0.50	Light brown loam and clay with vegetation.
805234	TP106	3	0.20	Brown loam and clay with vegetation and gravel
805235	TP108	9	1.00	Light brown sandy clay with stones.
805236	TP109	3	0.30	Brown loam and clay with vegetation.
805237	TP110	3	0.30	Brown loam and clay with vegetation.
805238	TP113	3	0.30	Grey gravelly loam with vegetation.
805239	TP113	6	0.60	Brown sandy clay.
805240	TP113	2	1.40	Brown sandy clay.
805241	TP113	5	2.00	Brown sandy clay.
805242	TP113	1	3.00	Light brown sandy clay.
805243	WS101	None Supplied	0.50-0.55	Brown loam and clay with vegetation and brick.
805244	WS102A	None Supplied	0.00-0.20	Brown loam and clay with vegetation and gravel
805245	WS104C	None Supplied	0.10-0.20	Brown loam and clay with stones and vegetation.
805246	WS104C	None Supplied	1.80-1.90	Light brown sandy clay with stones.
805247	WS109	None Supplied	0.10-0.20	Brown loam and clay with gravel and vegetation.
805248	WS110	None Supplied	0.05-0.15	Brown loam and clay with vegetation.
805249	WS110	None Supplied	0.50-0.55	Light brown loam and clay with vegetation.
805250	WS111	None Supplied	0.48-0.60	Grey gravelly clay with stones.
805251	WS112	None Supplied	0.50-0.55	Light brown sandy clay with gravel and vegetation.

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Water (PrW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Asbestos identification in soil	Asbestos Identification with the use of polarised light microscopy in conjunction with disperion staining techniques.	In house method based on HSG 248	A001-PL	D	ISO 17025
Boron, water soluble, in soil	Determination of water soluble boron in soil by hot water extract followed by ICP-OES.	In-house method based on Second Site Properties version 3	L038-PL	D	MCERTS
BTEX and MTBE in soil (Monoaromatics)	Determination of BTEX in soil by headspace GC-MS.	In-house method based on USEPA8260	L073B-PL	W	MCERTS
Fraction of Organic Carbon in soil	Determination of fraction of organic carbon in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L023-PL	D	NONE
Free cyanide in soil	Determination of free cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton(Skalar)	L080-PL	W	MCERTS
Hexavalent chromium in soil	Determination of hexavalent chromium in soil by extraction in water then by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry.	In-house method	L080-PL	W	MCERTS
Metals in soil by ICP-OES	Determination of metals in soil by aqua-regia digestion followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L038-PL	D	MCERTS
Moisture Content	Moisture content, determined gravimetrically.	In-house method based on BS1377 Part 2, 1990, Chemical and Electrochemical Tests	L019-UK/PL	W	NONE
Monohydric phenols in soil	Determination of phenols in soil by extraction with sodium hydroxide followed by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar)	L080-PL	W	MCERTS
pH in soil (automated)	Determination of pH in soil by addition of water followed by automated electrometric measurement.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L099-PL	D	MCERTS
PRO (Soil)	Determination of hydrocarbons C6-C10 by headspace GC-MS.	In-house method based on USEPA8260	L088-PL	W	MCERTS
Semi-volatile organic compounds in soil	Determination of semi-volatile organic compounds in soil by extraction in dichloromethane and hexane followed by GC-MS.	In-house method based on USEPA 8270	L064-PL	D	MCERTS
Speciated EPA-16 PAHs in soil	Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270	L064-PL	D	MCERTS
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Sulphate, water soluble, in soil (16hr extraction)	Determination of water soluble sulphate by ICP- OES. Results reported directly (leachate equivalent) and corrected for extraction ratio (soil equivalent).	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests, 2:1 water:soil extraction, analysis by ICP-OES.	L038-PL	D	MCERTS
Tentatively identified compounds (SVOC) in soil	Determination of semi-volatile organic compounds total ion count in soil by extraction with dichloromethane and hexane followed by GC-MS followed by a full library scan.	In-house method based on USEPA 8270	L064-PL	D	NONE
Tentatively identified compounds (VOC) in soil	Determination of volatile organic compounds total ion count in soil by headspace GC-MS followed by a full library scan.	In-house method based on USEPA8260	L073-PL	W	NONE

Iss No 17-58392-1 Otterpool UA008926

Analytical Report Number: 17-58392

Project / Site name: Otterpool

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Water (PrW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Total cyanide in soil	Determination of total cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	W	MCERTS
TPHCWG (Soil)	Determination of hexane extractable hydrocarbons in soil by GC-MS/GC-FID.	In-house method	L088/76-PL	W	MCERTS
Volatile organic compounds in soil	Determination of volatile organic compounds in soil by headspace GC-MS.	In-house method based on USEPA8260	L073B-PL	W	MCERTS

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Sam Summers

Arcadis Consulting (UK) Ltd 1st Floor 2 Glass Wharf Temple Quay Bristol BS2 0FR

e: Sam.Summers@arcadis.com

i2 Analytical Ltd.
7 Woodshots Meadow,
Croxley Green
Business Park,
Watford,
Herts,
WD18 8YS

t: 01923 225404 **f:** 01923 237404

e: reception@i2analytical.com

Analytical Report Number: 17-58613

Project / Site name: Otterpool Samples received on: 23/08/2017

Your job number: UA008926 Samples instructed on: 29/08/2017

Your order number: Analysis completed by: 06/09/2017

Report Issue Number: 1 **Report issued on:** 06/09/2017

Samples Analysed: 7 soil samples

Signed:

Rexona Rahman Reporting Manager For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

soils - 4 weeks from reporting leachates - 2 weeks from reporting waters - 2 weeks from reporting

asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Standard sample disposal times, unless otherwise agreed with the laboratory, are :

Lab Sample Number				806659	806660	806661	806662	806663
Sample Reference				HD101	HD102	HD103	BH103	BH102
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				0.30	0.30	0.50	2.00	0.30
Date Sampled				21/08/2017	21/08/2017	21/08/2017	15/08/2017	24/08/2017
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	N/A	NONE	11	10	9.9	21	13
Total mass of sample received	kg	0.001	NONE	0.37	0.38	0.35	0.42	0.40
Asbestos in Soil	Туре	N/A	ISO 17025	Not-detected	Not-detected	Not-detected	Not-detected	Not-detected
General Inorganics								
pH - Automated	pH Units	N/A	MCERTS	7.9	7.6	7.5	7.7	7.7
Total Cyanide	mg/kg	1	MCERTS	< 1	< 1	< 1	< 1	< 1
Free Cyanide	mg/kg	1	MCERTS	< 1	< 1	< 1	< 1	< 1
Water Soluble SO4 16hr extraction (2:1 Leachate								
Equivalent)	g/l	0.00125	MCERTS	0.044	0.023	0.025	0.026	0.016
Fraction Organic Carbon (FOC)	N/A	0.001	NONE	0.0056	0.0055	0.0048	0.0019	0.0024
Total Bloomale								
Total Phenois			MOEDEO	. 1.0	. 1.0	. 1.0	. 1.0	. 1.0
Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Speciated PAHs								
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Fluorene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Phenanthrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(a)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Chrysene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(a)pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Total PAH								
Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	< 0.80	< 0.80	< 0.80	< 0.80	< 0.80
Heavy Metals / Metalloids								
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	12	8.8	8.8	10	13
Boron (water soluble)	mg/kg	0.2	MCERTS	1.6	1.1	0.6	0.2	1.0
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Chromium (hexavalent)	mg/kg	4	MCERTS	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	19	21	21	34	27
Copper (aqua regia extractable)	mg/kg	1	MCERTS	14	13	18	34	50
Lead (aqua regia extractable)	mg/kg	1	MCERTS	14	12	12	13	14
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	< 0.3	0.7	< 0.3	< 0.3
Nickel (agua regia extractable)	mg/kg	1	MCERTS	22	20	23	40	24
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	37	35	36	48	47

Lab Sample Number				806659	806660	806661	806662	806663
Sample Reference				HD101	HD102	HD103	BH103	BH102
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				0.30	0.30	0.50	2.00	0.30
Date Sampled				21/08/2017	21/08/2017	21/08/2017	15/08/2017	24/08/2017
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status	ее заррже	топе заррява	топе осррже	ее заррже	поне очерене
Monoaromatics				1			1	
Benzene	ug/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	-	-
Toluene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	-	-
Ethylbenzene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	-	-
p & m-xylene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	-	-
o-xylene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	-	-
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	-	-
Petroleum Hydrocarbons Petroleum Range Organics (C6 - C10)	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	-	-
	_				•			
TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	-	-
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	-	-
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	-	-
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	-	-
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0	< 2.0	-	-
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	< 8.0	< 8.0	< 8.0	-	-
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	< 8.0	< 8.0	< 8.0	-	-
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10	< 10	< 10	-	-
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	_	-
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	_	-
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	_	-
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	-	-
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0	< 2.0	_	-
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	< 10	< 10	< 10	_	-
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	< 10	< 10	< 10	_	_
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10	< 10	< 10	_	_

						•	
Lab Sample Number				806664	806665		
Sample Reference				BH105	BH105		
Sample Number				None Supplied	None Supplied		
Depth (m)				0.30	0.50		
Date Sampled				22/08/2017	22/08/2017		
Time Taken				None Supplied	None Supplied		
			Α				
A contract of Boson contract	_	Limit of detection	Accreditation Status				
Analytical Parameter	Units	E E	edit				
(Soil Analysis)	ស	할 역	us us				
		_	9				
Stone Content	%	0.1	NONE	< 0.1	< 0.1		Ì
Moisture Content	%	N/A	NONE	12	11		
Total mass of sample received	kg	0.001	NONE	0.42	0.37		
	-						
Asbestos in Soil	Type	N/A	ISO 17025	Not-detected	Not-detected		
General Inorganics						•	1
pH - Automated	pH Units	N/A	MCERTS	7.3	7.3	1	
Total Cyanide	mg/kg	1	MCERTS	< 1	< 1	1	
Free Cyanide	mg/kg	1	MCERTS	< 1	< 1		
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	g/l	0.00125	MCERTS	0.024	0.022		
Fraction Organic Carbon (FOC)	g/i N/A	0.00123	NONE	0.0069	0.0070		
Fraction Organic Carbon (FOC)	IN/A	0.001	NONE	0.0069	0.0070		<u> </u>
Total Phenols							
Total Phenols (monohydric)	ma/ka	1	MCERTS	< 1.0	< 1.0		
rotal i Honolo (Honoliyane)	1119/119		TIGERTO	, 2.0	, 2.0		
Speciated PAHs							
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05		
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05		
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05		
Fluorene	mg/kg	0.05	MCERTS	< 0.05	< 0.05		
Phenanthrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05		
Anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05		
Fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05		
Pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05		
Benzo(a)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05		
Chrysene	mg/kg	0.05	MCERTS	< 0.05	< 0.05		
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05		
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05		
Benzo(a)pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05		
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	1	
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	1	
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05		1
Total DALI							
Total PAH Speciated Total EPA-16 PAHs	T "	0.0	MCESTS	. 0.00	10.00	1	I
Specialed Total EPA-10 PAMS	mg/kg	0.8	MCERTS	< 0.80	< 0.80	1	1
Heavy Metals / Metalloids							
Arsenic (agua regia extractable)	mg/kg	1	MCERTS	8.7	9.6		
Boron (water soluble)	mg/kg	0.2	MCERTS	0.5	0.8	1	1
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	< 0.2	1	1
Chromium (hexavalent)	mg/kg	4	MCERTS	< 4.0	< 4.0	1	1
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	15	7.9	1	İ
Copper (aqua regia extractable)	mg/kg	1	MCERTS	19	12	1	1
Lead (aqua regia extractable)	mg/kg	1	MCERTS	20	13	1	İ
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	< 0.3		
Nickel (agua regia extractable)	mg/kg	1	MCERTS	8.8	5.2		
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0		Î
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	17	20		Ì

Lab Sample Number				806664	806665		
Sample Reference				BH105	BH105		
Sample Number				None Supplied	None Supplied		
Depth (m)				0.30	0.50		
Date Sampled				22/08/2017	22/08/2017		
Time Taken				None Supplied	None Supplied		
				Hone Supplied	Trone Supplied		
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status				
Monoaromatics						-	
Benzene	ug/kg	1	MCERTS	< 1.0	< 1.0		
Toluene	μg/kg	1	MCERTS	< 1.0	< 1.0		
Ethylbenzene	μg/kg	1	MCERTS	< 1.0	< 1.0		
p & m-xylene	μg/kg	1	MCERTS	< 1.0	< 1.0		
o-xylene	μg/kg	1	MCERTS	< 1.0	< 1.0		
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	1	MCERTS	< 1.0	< 1.0		
Petroleum Hydrocarbons Petroleum Range Organics (C6 - C10)	mg/kg	0.1	MCERTS	< 0.1	< 0.1		
TPH-CWG - Aliphatic >EC5 - EC6			1				
	mg/kg	0.001	MCERTS	< 0.001	< 0.001		
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.001	MCERTS	< 0.001	< 0.001		
TPH-CWG - Aliphatic >EC6 - EC8 TPH-CWG - Aliphatic >EC8 - EC10	mg/kg mg/kg	0.001 0.001	MCERTS MCERTS	< 0.001 < 0.001	< 0.001 < 0.001		
TPH-CWG - Aliphatic >EC6 - EC8 TPH-CWG - Aliphatic >EC8 - EC10 TPH-CWG - Aliphatic >EC10 - EC12	mg/kg mg/kg mg/kg	0.001 0.001 1	MCERTS MCERTS MCERTS	< 0.001 < 0.001 < 1.0	< 0.001 < 0.001 < 1.0		
TPH-CWG - Aliphatic >EC6 - EC8 TPH-CWG - Aliphatic >EC8 - EC10 TPH-CWG - Aliphatic >EC10 - EC12 TPH-CWG - Aliphatic >EC12 - EC16	mg/kg mg/kg mg/kg mg/kg	0.001 0.001 1 2	MCERTS MCERTS MCERTS MCERTS	< 0.001 < 0.001 < 1.0 < 2.0	< 0.001 < 0.001 < 1.0 < 2.0		
TPH-CWG - Aliphatic >EC6 - EC8 TPH-CWG - Aliphatic >EC8 - EC10 TPH-CWG - Aliphatic >EC10 - EC12 TPH-CWG - Aliphatic >EC12 - EC16 TPH-CWG - Aliphatic >EC16 - EC21	mg/kg mg/kg mg/kg mg/kg mg/kg	0.001 0.001 1 2 8	MCERTS MCERTS MCERTS MCERTS MCERTS	< 0.001 < 0.001 < 1.0 < 2.0 < 8.0	< 0.001 < 0.001 < 1.0 < 2.0 < 8.0		
TPH-CWG - Aliphatic >EC6 - EC8 TPH-CWG - Aliphatic >EC8 - EC10 TPH-CWG - Aliphatic >EC10 - EC12 TPH-CWG - Aliphatic >EC12 - EC16 TPH-CWG - Aliphatic >EC16 - EC21 TPH-CWG - Aliphatic >EC16 - EC21 TPH-CWG - Aliphatic >EC21 - EC35	mg/kg mg/kg mg/kg mg/kg mg/kg	0.001 0.001 1 2 8 8	MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS	< 0.001 < 0.001 < 1.0 < 2.0 < 8.0 < 8.0	< 0.001 < 0.001 < 1.0 < 2.0 < 8.0 < 8.0		
TPH-CWG - Aliphatic >EC6 - EC8 TPH-CWG - Aliphatic >EC8 - EC10 TPH-CWG - Aliphatic >EC10 - EC12 TPH-CWG - Aliphatic >EC12 - EC16 TPH-CWG - Aliphatic >EC16 - EC21	mg/kg mg/kg mg/kg mg/kg mg/kg	0.001 0.001 1 2 8	MCERTS MCERTS MCERTS MCERTS MCERTS	< 0.001 < 0.001 < 1.0 < 2.0 < 8.0	< 0.001 < 0.001 < 1.0 < 2.0 < 8.0		
TPH-CWG - Aliphatic >EC6 - EC8 TPH-CWG - Aliphatic >EC8 - EC10 TPH-CWG - Aliphatic >EC10 - EC12 TPH-CWG - Aliphatic >EC12 - EC16 TPH-CWG - Aliphatic >EC16 - EC21 TPH-CWG - Aliphatic >EC16 - EC21 TPH-CWG - Aliphatic >EC21 - EC35 TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.001 0.001 1 2 8 8	MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS	< 0.001 < 0.001 < 1.0 < 2.0 < 8.0 < 8.0 < 10	< 0.001 < 0.001 < 1.0 < 2.0 < 8.0 < 8.0 < 10		
TPH-CWG - Aliphatic >EC6 - EC8 TPH-CWG - Aliphatic >EC8 - EC10 TPH-CWG - Aliphatic >EC10 - EC12 TPH-CWG - Aliphatic >EC12 - EC16 TPH-CWG - Aliphatic >EC16 - EC21 TPH-CWG - Aliphatic >EC16 - EC21 TPH-CWG - Aliphatic >EC21 - EC35 TPH-CWG - Aliphatic (EC5 - EC35) TPH-CWG - Aromatic >EC5 - EC7	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.001 0.001 1 2 8 8 10	MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS	< 0.001 < 0.001 < 1.0 < 2.0 < 8.0 < 8.0 < 10	< 0.001 < 0.001 < 1.0 < 2.0 < 8.0 < 8.0 < 10		
TPH-CWG - Aliphatic >EC6 - EC8 TPH-CWG - Aliphatic >EC8 - EC10 TPH-CWG - Aliphatic >EC10 - EC12 TPH-CWG - Aliphatic >EC12 - EC16 TPH-CWG - Aliphatic >EC16 - EC21 TPH-CWG - Aliphatic >EC16 - EC21 TPH-CWG - Aliphatic >EC21 - EC35 TPH-CWG - Aliphatic (EC5 - EC35) TPH-CWG - Aromatic >EC5 - EC7 TPH-CWG - Aromatic >EC5 - EC7	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.001 0.001 1 2 8 8 10 0.001 0.001	MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS	< 0.001 < 0.001 < 1.0 < 2.0 < 8.0 < 8.0 < 10 < 0.001 < 0.001	< 0.001 < 0.001 < 1.0 < 2.0 < 8.0 < 8.0 < 10 < 0.001 < 0.001		
TPH-CWG - Aliphatic >EC6 - EC8 TPH-CWG - Aliphatic >EC8 - EC10 TPH-CWG - Aliphatic >EC10 - EC12 TPH-CWG - Aliphatic >EC12 - EC16 TPH-CWG - Aliphatic >EC16 - EC21 TPH-CWG - Aliphatic >EC16 - EC21 TPH-CWG - Aliphatic >EC21 - EC35 TPH-CWG - Aliphatic (EC5 - EC35) TPH-CWG - Aromatic >EC5 - EC7 TPH-CWG - Aromatic >EC5 - EC8 TPH-CWG - Aromatic >EC7 - EC8 TPH-CWG - Aromatic >EC8 - EC10	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.001 0.001 1 2 8 8 10 0.001 0.001 0.001	MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS	< 0.001 < 0.001 < 1.0 < 2.0 < 8.0 < 8.0 < 10 < 0.001 < 0.001 < 0.001 < 0.001	< 0.001 < 0.001 < 1.0 < 2.0 < 8.0 < 8.0 < 10 < 0.001 < 0.001 < 0.001 < 0.001		
TPH-CWG - Aliphatic >EC6 - EC8 TPH-CWG - Aliphatic >EC8 - EC10 TPH-CWG - Aliphatic >EC10 - EC12 TPH-CWG - Aliphatic >EC12 - EC16 TPH-CWG - Aliphatic >EC16 - EC21 TPH-CWG - Aliphatic >EC16 - EC21 TPH-CWG - Aliphatic >EC21 - EC35 TPH-CWG - Aliphatic >EC5 - EC35 TPH-CWG - Aromatic >EC5 - EC7 TPH-CWG - Aromatic >EC5 - EC7 TPH-CWG - Aromatic >EC7 - EC8 TPH-CWG - Aromatic >EC8 - EC10 TPH-CWG - Aromatic >EC8 - EC10	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.001 0.001 1 2 8 8 10 0.001 0.001 0.001 1	MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS	< 0.001 < 0.001 < 1.0 < 2.0 < 8.0 < 8.0 < 10 < 0.001 < 0.001 < 0.001 < 1.0	< 0.001 < 0.001 < 1.0 < 2.0 < 8.0 < 8.0 < 10 < 0.001 < 0.001 < 0.001 < 1.0		
TPH-CWG - Aliphatic >EC6 - EC8 TPH-CWG - Aliphatic >EC8 - EC10 TPH-CWG - Aliphatic >EC10 - EC12 TPH-CWG - Aliphatic >EC12 - EC16 TPH-CWG - Aliphatic >EC16 - EC21 TPH-CWG - Aliphatic >EC16 - EC21 TPH-CWG - Aliphatic >EC21 - EC35 TPH-CWG - Aliphatic >EC5 - EC35 TPH-CWG - Aromatic >EC5 - EC7 TPH-CWG - Aromatic >EC5 - EC7 TPH-CWG - Aromatic >EC7 - EC8 TPH-CWG - Aromatic >EC8 - EC10 TPH-CWG - Aromatic >EC10 - EC12 TPH-CWG - Aromatic >EC10 - EC12	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.001 0.001 1 2 8 8 10 0.001 0.001 0.001 1 2	MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS	< 0.001 < 0.001 < 1.0 < 2.0 < 8.0 < 8.0 < 10 < 0.001 < 0.001 < 0.001 < 1.0 < 2.0	< 0.001 < 0.001 < 1.0 < 2.0 < 8.0 < 8.0 < 10 < 0.001 < 0.001 < 0.001 < 1.0 < 2.0		
TPH-CWG - Aliphatic >EC6 - EC8 TPH-CWG - Aliphatic >EC8 - EC10 TPH-CWG - Aliphatic >EC10 - EC12 TPH-CWG - Aliphatic >EC12 - EC16 TPH-CWG - Aliphatic >EC16 - EC21 TPH-CWG - Aliphatic >EC16 - EC21 TPH-CWG - Aliphatic >EC21 - EC35 TPH-CWG - Aliphatic >EC5 - EC35 TPH-CWG - Aromatic >EC5 - EC7 TPH-CWG - Aromatic >EC5 - EC7 TPH-CWG - Aromatic >EC7 - EC8 TPH-CWG - Aromatic >EC8 - EC10 TPH-CWG - Aromatic >EC8 - EC10	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.001 0.001 1 2 8 8 10 0.001 0.001 0.001 1	MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS	< 0.001 < 0.001 < 1.0 < 2.0 < 8.0 < 8.0 < 10 < 0.001 < 0.001 < 0.001 < 1.0	< 0.001 < 0.001 < 1.0 < 2.0 < 8.0 < 8.0 < 10 < 0.001 < 0.001 < 0.001 < 1.0		

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
806659	HD101	None Supplied	0.30	Light brown clay and sand with gravel.
806660	HD102	None Supplied	0.30	Light brown clay and sand with gravel.
806661	HD103	None Supplied	0.50	Light brown clay and sand with gravel.
806662	BH103	None Supplied	2.00	Light brown clay.
806663	BH102	None Supplied	0.30	Light brown clay and sand.
806664	BH105	None Supplied	0.30	Light brown clay and sand with gravel.
806665	BH105	None Supplied	0.50	Light brown clay and sand with gravel.

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Water (PrW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Asbestos identification in soil	Asbestos Identification with the use of polarised light microscopy in conjunction with disperion staining techniques.	In house method based on HSG 248	A001-PL	D	ISO 17025
Boron, water soluble, in soil	Determination of water soluble boron in soil by hot water extract followed by ICP-OES.	In-house method based on Second Site Properties version 3	L038-PL	D	MCERTS
BTEX and MTBE in soil (Monoaromatics)	Determination of BTEX in soil by headspace GC-MS.	In-house method based on USEPA8260	L073B-PL	W	MCERTS
Fraction of Organic Carbon in soil	Determination of fraction of organic carbon in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L023-PL	D	NONE
Free cyanide in soil	Determination of free cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton(Skalar)	L080-PL	W	MCERTS
Hexavalent chromium in soil	Determination of hexavalent chromium in soil by extraction in water then by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry.	In-house method	L080-PL	W	MCERTS
Metals in soil by ICP-OES	Determination of metals in soil by aqua-regia digestion followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L038-PL	D	MCERTS
Moisture Content	Moisture content, determined gravimetrically.	In-house method based on BS1377 Part 2, 1990, Chemical and Electrochemical Tests	L019-UK/PL	W	NONE
Monohydric phenols in soil	Determination of phenols in soil by extraction with sodium hydroxide followed by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar)	L080-PL	W	MCERTS
pH in soil (automated)	Determination of pH in soil by addition of water followed by automated electrometric measurement.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L099-PL	D	MCERTS
PRO (Soil)	Determination of hydrocarbons C6-C10 by headspace GC-MS.	In-house method based on USEPA8260	L088-PL	W	MCERTS
Speciated EPA-16 PAHs in soil	Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270	L064-PL	D	MCERTS
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Sulphate, water soluble, in soil (16hr extraction)	Determination of water soluble sulphate by ICP- OES. Results reported directly (leachate equivalent) and corrected for extraction ratio (soil equivalent).	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests, 2:1 water:soil extraction, analysis by ICP-OES.	L038-PL	D	MCERTS
Total cyanide in soil	Determination of total cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	W	MCERTS
TPHCWG (Soil)	Determination of hexane extractable hydrocarbons in soil by GC-MS/GC-FID.	In-house method	L088/76-PL	W	MCERTS

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Iss No 17-58613-1 Otterpool UA008926

Ian Parsons

Arcadis Consulting (UK) Ltd 5th Floor The Pithay Bristol BS1 2NL

t: 01173721360

e: ian.parsons@arcadis.com

i2 Analytical Ltd.
7 Woodshots Meadow,
Croxley Green
Business Park,
Watford,
Herts,
WD18 8YS

t: 01923 225404 **f:** 01923 237404

e: reception@i2analytical.com

Analytical Report Number: 17-59238

Project / Site name: Otterpool Samples received on: 01/09/2017

Your job number: UA008926 Samples instructed on: 05/09/2017

Your order number: Analysis completed by: 13/09/2017

Report Issue Number: 1 **Report issued on:** 13/09/2017

Samples Analysed: 7 water samples

Signed:

Emma Winter
Assistant Reporting Manager
For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are : soils - 4 weeks from reporting

leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Lab Sample Number				810197	810198	810199	810200	810201
Sample Reference				BH104	WS105	WS107	BH103	WS106
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Date Sampled				31/08/2017	31/08/2017	31/08/2017	31/08/2017	31/08/2017
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status					
General Inorganics								
рН	pH Units	N/A	ISO 17025	7.3	6.8	6.3	7.6	7.2
Total Cyanide	μg/l	10	ISO 17025	< 10	< 10	< 10	< 10	< 10
Free Cyanide	μg/l	10	ISO 17025	< 10	< 10	< 10	< 10	< 10
Sulphate as SO ₄	μg/l	45	ISO 17025	48400	134000	36900	75800	58300
Sulphate as SO ₄	mg/l	0.045	ISO 17025	48	130	37	76	58
Alkalinity	mgCaCO3/I	3	ISO 17025	440	400	110	210	370
Phenols by HPLC								
Catechol	μg/l	0.5	NONE	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Resorcinol	μg/l	0.5	NONE	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Ethylphenol & Dimethylphenol	μg/l	0.5	NONE	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Cresols	μg/l	0.5	NONE	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Naphthols	μg/l	0.5	NONE	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Isopropylphenol	μg/l	0.5	NONE	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Phenol	μg/l	0.5	NONE	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Trimethylphenol	μg/l	0.5	NONE	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Total Phenois								
Total Phenois (HPLC)	μg/l	3.5	NONE	< 3.5	< 3.5	< 3.5	< 3.5	< 3.5
Total Friends (TIFEC)	μд/і	5.5	NONL	V 3.3	\ 3.3	\ 3.3	V 3.3	\ J.J
Speciated PAHs								
Naphthalene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Acenaphthylene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Acenaphthene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Fluorene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Phenanthrene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Anthracene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Fluoranthene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Pyrene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(a)anthracene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Chrysene Renze/h)fluerenthene	μg/l	0.01	ISO 17025 ISO 17025	< 0.01 < 0.01	< 0.01 < 0.01	< 0.01	< 0.01 < 0.01	< 0.01 < 0.01
Benzo(b)fluoranthene Benzo(k)fluoranthene	μg/l μg/l	0.01	ISO 17025 ISO 17025	< 0.01	< 0.01 < 0.01	< 0.01 < 0.01	< 0.01 < 0.01	< 0.01
Benzo(a)pyrene	μ <u>g</u> /l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Indeno(1,2,3-cd)pyrene	μg/I	0.01	NONE	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Dibenz(a,h)anthracene	μg/l	0.01	NONE	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(ghi)perylene	μg/l	0.01	NONE	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Total PAH								
Total EPA-16 PAHs	μg/l	0.16	NONE	< 0.16	< 0.16	< 0.16	< 0.16	< 0.16
	. P3/			3.20		. 3.20		
Heavy Metals / Metalloids			T.	_				
Arsenic (dissolved)	μg/l	0.15	ISO 17025	0.59	3.49	1.09	1.60	0.29
Boron (dissolved)	μg/l	10	ISO 17025	35	110	58	58	54
Cadmium (dissolved)	μg/l	0.02	ISO 17025	< 0.02	< 0.02	0.04	< 0.02	0.02
Chromium (hexavalent)	μg/l	5	ISO 17025	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Chromium (dissolved)	μg/l	0.2	ISO 17025	0.3	< 0.2	4.0	0.3	3.9
Copper (dissolved)	μg/l	0.5 0.2	ISO 17025	1.9 < 0.2	1.1 < 0.2	2.1	2.6 < 0.2	2.1
Lead (dissolved) Mercury (dissolved)	μg/l	0.2	ISO 17025		< 0.2	< 0.2 0.07	0.09	< 0.2 < 0.05
Nickel (dissolved)	μg/l	0.05	ISO 17025 ISO 17025	0.25 4.6	< 0.05 6.9	9.0	3.5	< 0.05 1.7
Selenium (dissolved)	μg/l μg/l	0.5	ISO 17025	5.3	0.7	< 0.6	1.3	< 0.6
Zinc (dissolved)	μg/I	0.5	ISO 17025	2.8	8.8	5.5	2.4	2.0
	P9/1	5.5	200 1/020	2.0	0.0	5.5		2.0

Lab Sample Number				810197	810198	810199	810200	810201
Sample Reference				BH104	WS105	WS107	BH103	WS106
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Date Sampled				31/08/2017	31/08/2017	31/08/2017	31/08/2017	31/08/2017
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status					
Monoaromatics								
Benzene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Toluene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
p & m-xylene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
o-xylene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Petroleum Hydrocarbons Petroleum Range Organics (C6 - C10)	μg/l	10	ISO 17025	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
TPH-CWG - Aliphatic >C5 - C6	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >C6 - C8	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >C8 - C10	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >C10 - C12	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic >C12 - C16	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic >C16 - C21	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic >C21 - C35	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic (C5 - C35)	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >C5 - C7	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic >C7 - C8	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic >C8 - C10	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic >C10 - C12	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >C12 - C16	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >C16 - C21	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >C21 - C35	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic (C5 - C35)	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10

U/S = Unsuitable Sample I/S = Insufficient Sample

Lab Camula Numb				010202	010202		1	
Lab Sample Number				810202	810203		1	
Sample Reference				WS108	BH105		ļ	
Sample Number				None Supplied	None Supplied			
Depth (m)				None Supplied	None Supplied			
Date Sampled				31/08/2017	31/08/2017			
Time Taken				None Supplied	None Supplied		ļ	
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status					
General Inorganics								
pH	pH Units	N/A	ISO 17025	5.2	6.0			
Total Cyanide	μg/l	10	ISO 17025	< 10	< 10			
Free Cyanide	μg/l	10	ISO 17025	< 10	< 10			
Sulphate as SO ₄	μg/l	45	ISO 17025	39700	173000			
Sulphate as SO ₄	mg/l	0.045	ISO 17025	40	170			
Alkalinity	mgCaCO3/I	3	ISO 17025	15	55			
Phenois by HPLC								
Catechol	μg/l	0.5	NONE	< 0.5	< 0.5		1	
Resorcinol	μg/l	0.5	NONE	< 0.5	< 0.5		1	
Ethylphenol & Dimethylphenol	μg/l	0.5	NONE	< 0.5	< 0.5		1	
Cresols	μg/l	0.5	NONE	< 0.5	< 0.5		1	
Naphthols	μg/l	0.5	NONE	< 0.5	< 0.5			
Isopropylphenol	μg/l	0.5	NONE	< 0.5	< 0.5			
Phenol	μg/l	0.5	NONE	< 0.5	< 0.5			
Trimethylphenol	μg/l	0.5	NONE	< 0.5	< 0.5			
	μ9/1	0.5	NONE	٧ 0.5	, 0.5		-	<u>.</u>
Total Phenois	1		1			1	T	
Total Phenols (HPLC)	μg/l	3.5	NONE	< 3.5	< 3.5			
Speciated DAUs								
Speciated PAHs Naphthalene	ug/l	0.01	ISO 17025	< 0.01	< 0.01		1	
Acenaphthylene	μg/l μg/l	0.01	ISO 17025	< 0.01	< 0.01			
Acenaphthene		0.01	ISO 17025	< 0.01	< 0.01			
Fluorene	μg/l μg/l	0.01	ISO 17025	< 0.01	< 0.01			
Phenanthrene	μg/I μg/I	0.01	ISO 17025	< 0.01	< 0.01			
Anthracene	μg/l	0.01	ISO 17025	< 0.01	< 0.01			
Fluoranthene	μg/I	0.01	ISO 17025	< 0.01	< 0.01			
Pyrene	μg/l	0.01	ISO 17025	< 0.01	< 0.01			
Benzo(a)anthracene	μg/l	0.01	ISO 17025	< 0.01	< 0.01			
Chrysene	μg/l	0.01	ISO 17025	< 0.01	< 0.01			
Benzo(b)fluoranthene	μg/l	0.01	ISO 17025	< 0.01	< 0.01		1	
Benzo(k)fluoranthene	μg/l	0.01	ISO 17025	< 0.01	< 0.01			
Benzo(a)pyrene	μg/l	0.01	ISO 17025	< 0.01	< 0.01			
Indeno(1,2,3-cd)pyrene	μg/l	0.01	NONE	< 0.01	< 0.01			
Dibenz(a,h)anthracene	μg/l	0.01	NONE	< 0.01	< 0.01			
Benzo(ghi)perylene	μg/l	0.01	NONE	< 0.01	< 0.01			
Total PAH					ı		•	
Total EPA-16 PAHs	μg/l	0.16	NONE	< 0.16	< 0.16			
Heavy Metals / Metalloids								
Arsenic (dissolved)	μg/l	0.15	ISO 17025	0.36	1.00			
Boron (dissolved)		10	ISO 17025	78	58		1	1
Cadmium (dissolved)	μg/l μg/l	0.02	ISO 17025 ISO 17025	0.23	< 0.02		1	1
Chromium (hexavalent)	μg/I μg/I	5	ISO 17025	< 5.0	< 5.0		1	
Chromium (dissolved)	μg/I μg/I	0.2	ISO 17025	2.1	< 0.2		†	1
Copper (dissolved)	μg/l	0.5	ISO 17025	6.6	1.0		 	
Lead (dissolved)	μg/I μg/I	0.2	ISO 17025	0.6	< 0.2		†	1
Mercury (dissolved)	μg/l	0.05	ISO 17025	< 0.05	< 0.05		1	
Nickel (dissolved)	μg/l	0.03	ISO 17025	30	5.9		1	1
Selenium (dissolved)	μg/l	0.6	ISO 17025	< 0.6	7.0		1	
Zinc (dissolved)	μg/l	0.5	ISO 17025	87	8.8		1	1
· /	r 31 ·							

Lab Sample Number				810202	810203			
Sample Reference		WS108	BH105					
Sample Number				None Supplied	None Supplied			
Depth (m)		None Supplied	None Supplied					
Date Sampled				31/08/2017	31/08/2017			
Time Taken				None Supplied	None Supplied			
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status					
Monoaromatics								
Benzene	μg/l	1	ISO 17025	< 1.0	< 1.0			
Toluene	μg/l	1	ISO 17025	< 1.0	< 1.0			
Ethylbenzene	μg/l	1	ISO 17025	< 1.0	< 1.0			
p & m-xylene	μg/l	1	ISO 17025	< 1.0	< 1.0			
o-xylene	μg/l	1	ISO 17025	< 1.0	< 1.0			
MTBE (Methyl Tertiary Butyl Ether)	μg/l	1	ISO 17025	< 1.0	< 1.0			
Petroleum Hydrocarbons Petroleum Range Organics (C6 - C10)	μg/l	10	ISO 17025	< 10.0	< 10.0			
TPH-CWG - Aliphatic >C5 - C6		1	ISO 17025	< 1.0	< 1.0	1	1	1
TPH-CWG - Aliphatic >C5 - C6 TPH-CWG - Aliphatic >C6 - C8	μg/l μg/l	1	ISO 17025	< 1.0	< 1.0			1
TPH-CWG - Aliphatic >C6 - C6	μg/I μg/I	1	ISO 17025	< 1.0	< 1.0			
TPH-CWG - Aliphatic >C10 - C12	μg/l	10	NONE	< 10	< 10			
TPH-CWG - Aliphatic >C12 - C16	μg/l	10	NONE	< 10	< 10			
TPH-CWG - Aliphatic > C16 - C21	μg/l	10	NONE	< 10	< 10			
TPH-CWG - Aliphatic >C21 - C35	μg/l	10	NONE	< 10	< 10			
TPH-CWG - Aliphatic (C5 - C35)	µg/l	10	NONE	< 10	< 10			
					•			
TPH-CWG - Aromatic >C5 - C7	μg/l	1	ISO 17025	< 1.0	< 1.0			
TPH-CWG - Aromatic >C7 - C8	μg/l	1	ISO 17025	< 1.0	< 1.0			
TPH-CWG - Aromatic >C8 - C10	μg/l	1	ISO 17025	< 1.0	< 1.0			
TPH-CWG - Aromatic >C10 - C12	μg/l	10	NONE	< 10	< 10			
TPH-CWG - Aromatic >C12 - C16	μg/l	10	NONE	< 10	< 10			
TPH-CWG - Aromatic >C16 - C21	μg/l	10	NONE	< 10	< 10			
TPH-CWG - Aromatic >C21 - C35	μg/l	10	NONE	< 10	< 10			
TPH-CWG - Aromatic (C5 - C35)	μg/l	10	NONE	< 10	< 10			

U/S = Unsuitable Sample I/S = Insufficient Sample

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Water (PrW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Alkalinity in Water	Determination of Alkalinity by discreet analyser (colorimetry). Accredited matrices: SW, PW, GW.	In house method based on MEWAM & USEPA Method 310.2.	L082-PL	W	ISO 17025
Boron in water	Determination of boron in water by acidification followed by ICP-OES. Accredited matrices: SW PW GW	In-house method based on MEWAM	L039-PL	W	ISO 17025
BTEX and MTBE in water (Monoaromatics)	Determination of BTEX and MTBE in water by headspace GC-MS. Accredited matrices: SW PW GW	In-house method based on USEPA8260	L073B-PL	W	ISO 17025
Free cyanide in water	Determination of free cyanide by distillation followed by colorimetry.Accredited matrices SW, GW, PW.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	W	ISO 17025
Hexavalent chromium in water	Determination of hexavalent chromium in water by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry.	In-house method by continuous flow analyser. Accredited Matrices SW, GW, PW.	L080-PL	W	ISO 17025
Metals in water by ICP-MS (dissolved)	Determination of metals in water by acidification followed by ICP-MS. Accredited Matrices: SW, GW, PW except B=SW,GW, Hg=SW,PW, Al=SW,PW.	In-house method based on USEPA Method 6020 & 200.8 "for the determination of trace elements in water by ICP-MS.	L012-PL	W	ISO 17025
pH at 20oC in water (automated)	Determination of pH in water followed by electrometric measurement.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L099-PL	W	ISO 17025
Phenols, speciated, in water, by HPLC	Determination of speciated phenols by HPLC.	In house method based on Blue Book Method.	L030-PL	W	NONE
PRO (Waters)	Determination of hydrocarbons C6-C10 by headspace GC-MS.	In-house method based on USEPA8260	L088-PL	W	ISO 17025
Speciated EPA-16 PAHs in water	Determination of PAH compounds in water by extraction in dichloromethane followed by GC-MS with the use of surrogate and internal standards. Accredited matrices: SW PW GW	In-house method based on USEPA 8270	L0102B-PL	W	NONE
Sulphate in water	Determination of sulphate in water by acidification followed by ICP-OES. Accredited matrices: SW PW GW, PrW.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L039-PL	W	ISO 17025
Total cyanide in water	Determination of total cyanide by distillation followed by colorimetry. Accredited matrices: SW PW GW	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	W	ISO 17025
TPHCWG (Waters)	Determination of dichloromethane extractable hydrocarbons in water by GC-MS, speciation by interpretation.	In-house method	L070-PL	W	NONE

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Sample ID	Other_ID	Sample Type	Job	Sample Number	Sample Deviation Code	test_name	test_ref	Test Deviation code
BH103		W	17-59238	810200	С	pH at 20oC in water (automated)	L099-PL	С
BH104		W	17-59238	810197	С	pH at 20oC in water (automated)	L099-PL	С
BH105		W	17-59238	810203	С	pH at 20oC in water (automated)	L099-PL	С
WS105		W	17-59238	810198	С	pH at 20oC in water (automated)	L099-PL	С
WS106		W	17-59238	810201	С	pH at 20oC in water (automated)	L099-PL	С
WS107		W	17-59238	810199	С	pH at 20oC in water (automated)	L099-PL	С
WS108		W	17-59238	810202	С	pH at 20oC in water (automated)	L099-PL	С

Jon Raven

Arcadis Consulting (UK) Ltd 10 Medawar Road The Surrey Research Park Guildford Surrey GU2 7AR

t: 0870 000 3005 **f:** 0870 000 3905

e: jonathan.raven@arcadis.com

i2 Analytical Ltd.
7 Woodshots Meadow,
Croxley Green
Business Park,
Watford,
Herts,
WD18 8YS

t: 01923 225404 **f:** 01923 237404

e: reception@i2analytical.com

Analytical Report Number: 17-62066

Project / Site name: Otterpool Samples received on: 21/08/2017

Your job number: UA008926 Samples instructed on: 29/09/2017

Your order number: Analysis completed by: 02/10/2017

Report Issue Number: 1 **Report issued on:** 02/10/2017

Samples Analysed: 6 soil samples

Emma Winter
Assistant Reporting Manager
For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are : soils - 4 weeks from reporting

leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

_				•				
Lab Sample Number				826421	826422	826423	826424	826425
Sample Reference				TP107	WS103	WS105	WS106	WS107
Sample Number				3	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)	0.30	0.50-0.55	0.10-0.23	0.10-0.20	0.10-0.15			
Date Sampled				Deviating	Deviating	Deviating	Deviating	Deviating
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	N/A	NONE	13	11	14	11	11
Total mass of sample received	kg	0.001	NONE	1.5	1.9	1.8	2.0	1.9
					-			
Asbestos in Soil Screen / Identification Name	Туре	N/A	ISO 17025	-	-	Chrysotile- Loose Fibres	-	-
Asbestos in Soil	Туре	N/A	ISO 17025	Not-detected	Not-detected	Detected	Not-detected	Not-detected
					<u> </u>			<u></u>
General Inorganics								
pH - Automated	pH Units	N/A	MCERTS	6.3	6.1	6.8	6.6	6.8
Total Cyanide	mg/kg	1	MCERTS	< 1	< 1	< 1	< 1	< 1
Free Cyanide	mg/kg	1	MCERTS	< 1	< 1	< 1	< 1	< 1
Water Soluble SO4 16hr extraction (2:1 Leachate								
Equivalent)	g/l	0.00125	MCERTS	0.012	0.0083	0.016	0.018	0.015
Fraction Organic Carbon (FOC)	N/A	0.001	NONE	0.011	0.0030	0.026	0.011	0.011
Total Phenols					1			
Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Speciated PAHs						1		
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	0.16	< 0.05	< 0.05
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Fluorene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Phenanthrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	0.51	< 0.05	< 0.05
Anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	0.18	< 0.05	< 0.05
Fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	1.7	< 0.05	< 0.05
Pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	1.7	< 0.05	< 0.05
Benzo(a)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	1.1	< 0.05	< 0.05
Chrysene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	0.95	< 0.05	< 0.05
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	1.1	< 0.05	< 0.05
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	1.6	< 0.05	< 0.05
Benzo(a)pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	1.5	< 0.05	< 0.05
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	1.3	< 0.05	< 0.05
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	0.29	< 0.05	< 0.05
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	1.7	< 0.05	< 0.05
Total DAH								
Total PAH Speciated Total EPA-16 PAHs	malka	0.8	MCERTS	< 0.80	< 0.80	13.8	< 0.80	< 0.80
Specialed Total LFA-10 FARS	mg/kg	0.0	MCEKIS	\ ∪.0∪	< 0.00	13.0	\ ∪.0∪	< ∪.0∪
Heavy Metals / Metalloids								
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	16	9.5	4.9	15	21
Boron (water soluble)	mg/kg	0.2	MCERTS	0.4	0.5	1.3	0.8	1.0
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	< 0.2	0.3	< 0.2	< 0.2
Chromium (hexavalent)	mg/kg	4	MCERTS	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0
Chromium (nexavaient) Chromium (agua regia extractable)	mg/kg	1	MCERTS	31	77	29	41	37
Copper (aqua regia extractable)	mg/kg	1	MCERTS	10	3.9	21	12	15
Lead (aqua regia extractable)	mg/kg	1	MCERTS	18	10	40	27	20
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	29	67	17	19	24
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	57	71	110	56	58
Enric (aqua regia extractable)	mg/kg		I ICENTS	31	, ,	110	30	50

Lab Sample Number				826426			
Sample Reference				WS108			
Sample Number				None Supplied			
Depth (m)		0.05-0.15					
Date Sampled				Deviating			
Time Taken				None Supplied			
			W				
Analytical Dayameter	_	et ⊑	Accreditation Status				
Analytical Parameter	Units	Limit of detection	edit tatı				
(Soil Analysis)	is .	할 육	atio				
		_	9				
Stone Content	%	0.1	NONE	< 0.1			
Moisture Content	%	N/A	NONE	14			
Total mass of sample received	kg	0.001	NONE	1.6			
Asbestos in Soil Screen / Identification Name	Туре	N/A	ISO 17025	_			
Aspestos III Soli Screen / Identification Name	Турс	IV/A	150 17025				
Asbestos in Soil	Туре	N/A	ISO 17025	Not-detected			
General Inorganics					1		
pH - Automated	pH Units	N/A	MCERTS	6.6			
Total Cyanide	mg/kg	1	MCERTS	< 1		ļ	
Free Cyanide	mg/kg	1	MCERTS	< 1			
Water Soluble SO4 16hr extraction (2:1 Leachate	- 0	0.00125	MCEDIC	0.021			
Equivalent)	g/l	0.00125	MCERTS	0.021			
Fraction Organic Carbon (FOC)	N/A	0.001	NONE	0.022	<u> </u>	<u> </u>	<u>. </u>
Total Phenois							
		1	MCERTS	. 1.0		1	1
Total Phenols (monohydric)	mg/kg	1	MCERIS	< 1.0			1
Speciated PAHs							
Naphthalene		0.05	MCERTS	< 0.05			
Acenaphthylene	mg/kg mg/kg	0.05	MCERTS	< 0.05		1	
Acenaphthene		0.05	MCERTS	< 0.05		1	
Fluorene	mg/kg mg/kg	0.05	MCERTS	< 0.05			
Phenanthrene	mg/kg	0.05	MCERTS	0.32			
Anthracene	mg/kg	0.05	MCERTS	< 0.05			
Fluoranthene	mg/kg	0.05	MCERTS	0.72			
Pyrene	mg/kg	0.05	MCERTS	0.62			
Benzo(a)anthracene	mg/kg	0.05	MCERTS	0.36			
Chrysene	mg/kg	0.05	MCERTS	0.31			
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	0.33			
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	0.31			
Benzo(a)pyrene	mg/kg	0.05	MCERTS	0.32			
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	0.21		1	1
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	< 0.05			
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	0.20		1	1
72\L =. \ /	פייופיי					•	•
Total PAH							
Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	3.70			
						•	•
Heavy Metals / Metalloids							
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	14			
Boron (water soluble)	mg/kg	0.2	MCERTS	0.8			
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2			
Chromium (hexavalent)	mg/kg	4	MCERTS	< 4.0			
Chromium (agua regia extractable)	mg/kg	1	MCERTS	24			
Copper (aqua regia extractable)	mg/kg	1	MCERTS	22			
Lead (aqua regia extractable)	mg/kg	1	MCERTS	140			
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3			
Nickel (agua regia extractable)	mg/kg	1	MCERTS	12			
Selenium (agua regia extractable)	mg/kg	1	MCERTS	< 1.0			
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	63			

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
826421	TP107	3	0.30	Brown clay and loam with vegetation.
826422	WS103	None Supplied	0.50-0.55	Brown clay and loam with vegetation.
826423	WS105	None Supplied	0.10-0.23	Brown clay and loam with gravel and vegetation.
826424	WS106	None Supplied	0.10-0.20	Brown clay and loam with vegetation.
826425	WS107	None Supplied	0.10-0.15	Brown clay and loam with vegetation.
826426	WS108	None Supplied	0.05-0.15	Brown loam and clay with vegetation.

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Water (PrW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Asbestos identification in soil	Asbestos Identification with the use of polarised light microscopy in conjunction with disperion staining techniques.	In house method based on HSG 248	A001-PL	D	ISO 17025
Boron, water soluble, in soil	Determination of water soluble boron in soil by hot water extract followed by ICP-OES.	In-house method based on Second Site Properties version 3	L038-PL	D	MCERTS
Fraction of Organic Carbon in soil	Determination of fraction of organic carbon in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L023-PL	D	NONE
Free cyanide in soil	Determination of free cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton(Skalar)	L080-PL	W	MCERTS
Hexavalent chromium in soil	Determination of hexavalent chromium in soil by extraction in water then by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry.	In-house method	L080-PL	W	MCERTS
Metals in soil by ICP-OES	Determination of metals in soil by aqua-regia digestion followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L038-PL	D	MCERTS
Moisture Content	Moisture content, determined gravimetrically.	In-house method based on BS1377 Part 2, 1990, Chemical and Electrochemical Tests	L019-UK/PL	W	NONE
Monohydric phenols in soil	Determination of phenols in soil by extraction with sodium hydroxide followed by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar)	L080-PL	W	MCERTS
pH in soil (automated)	Determination of pH in soil by addition of water followed by automated electrometric measurement.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L099-PL	D	MCERTS
Speciated EPA-16 PAHs in soil	Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270	L064-PL	D	MCERTS
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Sulphate, water soluble, in soil (16hr extraction)	Determination of water soluble sulphate by ICP- OES. Results reported directly (leachate equivalent) and corrected for extraction ratio (soil equivalent).	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests, 2:1 water:soil extraction, analysis by ICP-OES.	L038-PL	D	MCERTS
Total cyanide in soil	Determination of total cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton(Skalar)	L080-PL	W	MCERTS
	 				

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Sample ID	Other_ID	Sample Type	Job	Sample Number	Sample Deviation Code	test_name	test_ref	Test Deviation code
TP107	3	S	17-62066	826421	а			
WS103		S	17-62066	826422	а			
WS105		S	17-62066	826423	а			
WS106		S	17-62066	826424	а			
WS107		S	17-62066	826425	а			
WS108		S	17-62066	826426	а			

Arcadis Consulting (UK) Limited

Level 1 2 Glass Wharf Temple Quay Bristol BS2 0FR United Kingdom

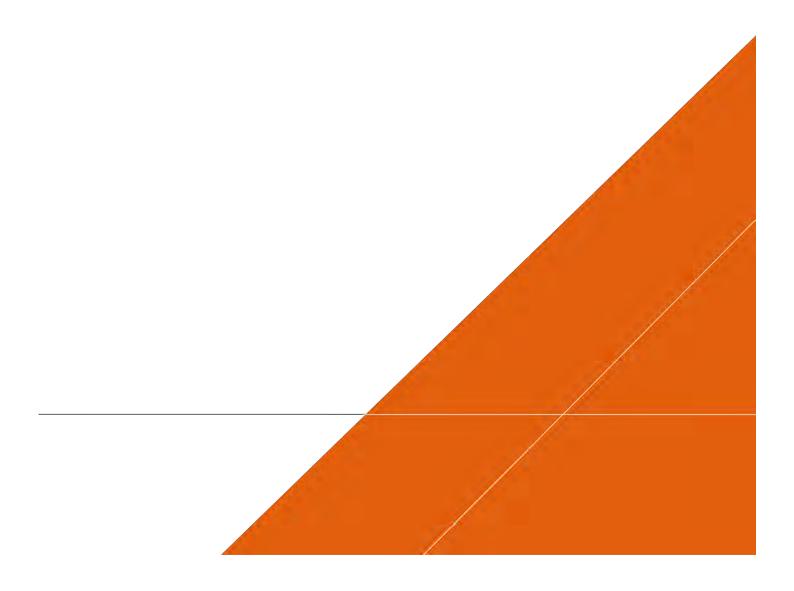
T: +44 (0)117 372 1200

arcadis.com

Т	his page is intenti	onally left blank	
			Sh

Otterpool Park Environmental Statement Appendix 10.1 – Ground Conditions Report

APPENDIX B


Arcadis Ground Investigation Factual Report, November 2018

OTTERPOOL PHASE 2

Ground Investigation Report

November 2018

CONTACTS

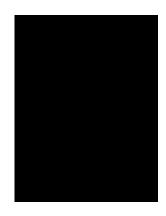
SIMON HARLOW Senior Consultant

df +44 (0) 1483 803000 m +44 (0) 7768 258375 e simon.harlow@arcadis.com Arcadis.
Ground Floor
10 Medawar Road
Guildford
GU2 7AR
United Kingdom

Otterpool Phase 2

Ground Investigation Report

AUTHORISED SIGNATURES


Author Praneeth Kadambala

Checker Ian Parsons

Approver Jon Venn

Report No 10011914-AFS-GLR-G001

Date November 2018

Version control

Version	Date	Author	Changes
00	November 2018	P. Kadambala	

This report dated November has been prepared for Folkestone & Hythe District Council (the "Client") in accordance with the terms and conditions of appointment dated 21st May 2018 (the "Appointment") between the Client and **Arcadis Consulting (UK) Limited** ("Arcadis") for the purposes specified in the Appointment. For avoidance of doubt, no other person(s) may use or rely upon this report or its contents, and Arcadis accepts no responsibility for any such use or reliance thereon by any other third party.

CONTENTS

1	INTRODUCTION	1
1.1	Limitations	1
1.2	Proposed Development	1
1.3	Existing Information	1
2	SITE DETAILS	2
2.1	Site Location and Description	
2.2	Geology	
2.3	Hydrogeology and Hydrology	
0	Trydrogoology and Trydrology	
3	FIELDWORK	6
3.1	General	6
3.2	Exploratory Holes	8
3.2.1	Exploratory Hole Locations	8
3.2.2	Investigation Methodology	8
3.2.3	Dynamic Sampling	10
3.2.4	Rotary Drilling	11
3.2.5	Trial Pitting/Trial Trenches	11
3.3	In situ Testing	11
3.3.1	Penetration Testing	11
3.3.2	Strength and Deformation Testing	12
3.3.3	Hydraulic Tests	13
3.3.4	VOC Head Space Screening	13
3.4	Installations and Post-fieldwork Monitoring	14
3.4.1	Installations	14
3.4.2	Post-fieldwork Monitoring	14
4	LABORATORY TESTING	15
4.1	General	15
4.2	Geotechnical Laboratory Testing	15
4.3	Geo-Environmental Laboratory Testing	15
5	REFERENCES	17

Otterpool Phase 2

FIGURES

Figure 2-1 Site Location	2
Figure 2-2 Geological Setting	3
TABLES	
Table 2-1 Historical Landfills	3
Table 2-2 Anticipated geological sequence	4
Table 3-1 Initial ground investigation scope	7
Table 4-1 Summary of geotechnical test data	15
Table 4-2 Summary of geo-environmental test data – soil matrix	16
Table 4-3 Summary of geo-environmental test data – groundwater matrix	16
Table 4-4 Summary of geo-environmental testing data - leachate	16

APPENDICES

APPENDIX A

DRAWINGS

Drawing 10011914-01-GL R-EHP-0001: Exploratory Hole Location Plan

APPENDIX B

STANDARD PROCEDURES

APPENDIX C

EXPLORATORY HOLE LOGS

APPENDIX D

CERTIFICATION OF FIELD APPARATUS

APPENDIX E

MONITORING DATA

APPENDIX F

GEOTECHNICAL LABORATORY TEST DATA

APPENDIX G

GEO-ENVIRONMENTAL LABORATORY TEST DATA

1 INTRODUCTION

Folkestone & Hythe District Council propose to develop a new garden town known as Otterpool Park in the county of Kent, to the south east of Ashford.. This ground investigation was commissioned by Folkestone & Hythe District Council, 'the Client', to inform on the ground conditions at the site.

An initial phase of ground investigation was completed by Arcadis Consulting (UK) Ltd in August 2017 [2]. The second phase of ground investigation, reported herein, was instructed on 21st May 2018.

This report provides a factual account of the fieldwork undertaken during the second phase of the investigation to obtain addition information including engineering descriptions of the various strata encountered, results of *in situ* testing including groundwater and land gas monitoring and the subsequent geotechnical and geo-environmental laboratory testing undertaken on samples obtained.

1.1 Limitations

This report has been prepared for the Client in accordance with the terms and conditions of appointment. Arcadis cannot accept any responsibility for any use of or reliance on the contents of this report by any third party. The copyright of this document, including the electronic format and any AGS data, shall remain the property of Arcadis.

Arcadis do not accept liability for any use of the information presented in this report unless it is signed by the author, checker and approver and marked as final.

It should be noted that ground conditions between exploratory holes may vary from those identified during this ground investigation; any design should take this into consideration. It should also be noted that groundwater levels may be subject to diurnal, seasonal, climatic variations and those recorded in this report are solely dependent on the time the ground investigation was carried out and the weather before and during the investigation.

1.2 Proposed Development

The proposed development comprises a new garden town which will include housing, land for employment, shops, schools and medical centres, as well as extensive open spaces and access to the countryside.

1.3 Existing Information

- a. Link Park Hydrogeological Assessment Report [1], Peter Brett Associates 2008.
- b. Otterpool Park Ground Investigation Factual Report [2], Arcadis 2017.

2 SITE DETAILS

2.1 Site Location and Description

The site is situated approximately 6 km southeast of Ashford and 12 km west of Folkestone centred at an approximate National Grid Reference (NGR) TR126371. Figure 2-1 shows the site location.

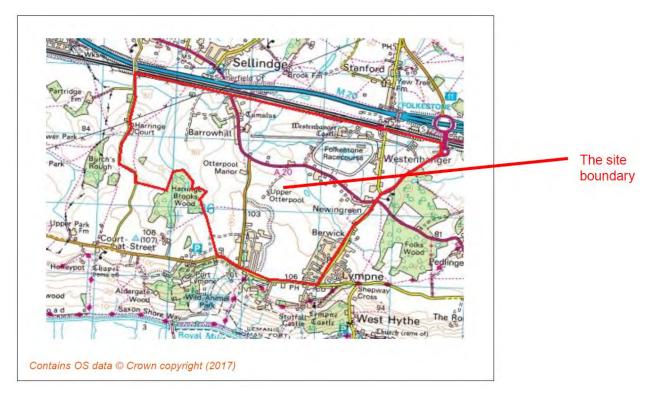


Figure 2-1 Site Location

At the time of the investigation, the site comprised arable and pasture fields, roads and trackways, farms and small clusters of buildings. The old Folkestone Racecourse forms the northeast part of the site. An industrial estate is located in the southern part of the site, and is surrounded by an earth embankment.

The A20 traverses the site in a roughly east to west orientation, and the B2067 traverses the site north to south. There are sporadic ditches and ponds across the site and a dirt-bike track located to the north west of the site. The M20 and a railway line borders the site to the north, and the site is surrounded by agricultural land in all other directions. Small towns such as Westenhanger, Newingreen and Lympne are located to the east of the site.

Springfiled Wood and Park Wood are located within the site boundary. Rabbit Wood, Harringe Brook Woods and Folks Wood border the site to the west, southwest and east respectively.

The topography of the site slopes downwards towards the north, with an approximate ground elevation of 100 m AOD on the sites southern boundary (B2067) to 65 m AOD on the sites northern boundary (railway line). Barrowhill, which is located in the northwest part of the site, has a ground elevation of 80 m AOD.

2.2 Geology

The published 1:50 000 scale British Geological Survey (BGS) map of the area incorporating the site, Sheet 305 & 306 [3], and the BGS online Geolndex [9] indicate that approximately 50% of the site is covered by Head (clay and silt) superficial deposits. The geological map indicates these deposits may be more gravel and sand dominated in the north and east of the site. Alluvium is shown associated with tributaries of the East Stour River, which drain most of the site towards the northeast.

The bedrock beneath encompasses the Lower Greensand Group, comprising the Folkestone Formation (sandstone) in the northeast corner of the site, the Sandgate Formation (sandstone, siltstone and mudstone) in the north and east and in three small outliers, and the Hythe Formation (sandstone and limestone) in the south and west. Underlying the Hythe Formation are mudstones of the Atherfield Clay and Weald Clay Formations, which outcrop on the slopes to the south of the site.

The general distribution of the strata at the site is shown in Figure 2-2. A summary of the anticipated geological sequence is shown in Table 2-2.

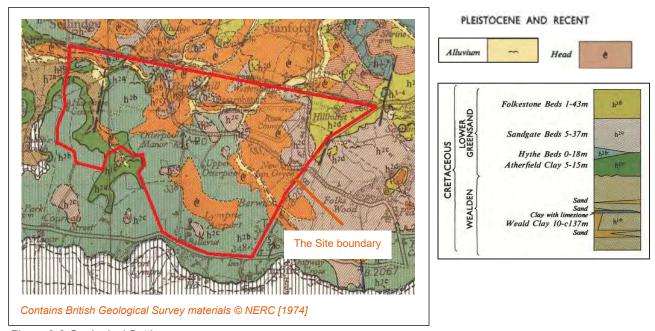


Figure 2-2 Geological Setting

Two faults are located on site comprising a north to south trending fault located approximately 800 m east of the site's western boundary. The fault sub-crop is approximately 1 km long and the downthrow is to east. A second north to south trending fault is located on the eastern boundary of the site. The fault sub-crop is approximately 700 m long, and the downthrow is to the west.

The Coal Authority website [12] indicates no evidence of coal outcrops or mining activities within the immediate vicinity of the site. Environment Agency [10] records show an historic landfill located to the north of Lympne Industrial Estate, although no exploratory hole locations are located in this area.

In addition to the published data described above, a review of data from BGS online GeoIndex [9] identified four historical boreholes located on site.

Otterpool Phase 2

Period	Formation	Description
Quaternary	Alluvium	Normally soft to firm consolidated, compressible silty clay, but can contain layers of silt, sand, peat and basal gravel. A stronger, desiccated surface zone may be present.
	Head	Polymict deposit: comprises gravel, sand and clay depending on upslope source and distance from source. Poorly sorted and poorly stratified deposits formed mostly by solifluction and/or hillwash and soil creep. Essentially comprises sand and gravel, locally with lenses of silt, clay or peat and organic material.
Cretaceous	Folkstone Formation	In Sussex, Kent and Surrey the formation comprises medium- and coarse-grained, well-sorted cross-bedded sands and weakly cemented sandstones; elsewhere includes calcareous sandstones. There are no formal divisions in the Weald, but equivalent beds in the west are termed the Child Okeford Sand Member and the Bedchester Sands Member.
	Sandgate Formation	Fine sands, silts and silty clays, commonly glauconitic; some sands limonitic or calcareous; some soft sandstones.
	Hythe Formation	In the western Weald, the formation comprises mainly fine- to medium-grained, sparsely glauconitic sands, sandstones and silts, locally pebbly, with calcareous or siliceous cement in beds or lenses in some areas. Some clay interbeds, including Fuller's Earth. In Kent and eastern Sussex the formation comprises, alternating sandy limestones ("Ragstone") and glauconitic sandy mudstones (Hassock).
	Atherfield Clay Formation	Generally massive yellowish brown to pale grey sandy mudstone throughout most of its outcrop, with an impersistent phosphatic pebble bed with vertebrate bones, gritty sandstone or very shelly sandy mudstone with glauconite, at the base. At the type site on the Isle of Wight, the predominant lithology is blue grey mudstone, variably sandy with calcareous concretions; the formation includes beds of sandstone, clay ironstone and phosphatic nodules. Weathers to a chocolate brown, bluish grey and brown, mottled pinkish brown to orange.
	Weald Clay Formation	Dark grey thinly-bedded mudstones (shales) and mudstones with subordinate siltstones, fine- to medium-grained sandstones, including calcareous sandstone (e.g. Horsham Stone Member), shelly limestones (the so called "Paludina Limestones") and clay ironstones.

Table 2-1 Anticipated geological sequence

2.3 Hydrogeology and Hydrology

The superficial deposits (Alluvium) are classified as a Secondary A aquifer, meaning "permeable layers capable of supporting water supplies at a local rather than strategic scale, and in some cases forming an important source of base flow to rivers".

The superficial deposits (Head) located in the northeast part of the site are classified as a Secondary Undifferentiated aquifer, meaning "this has been assigned in cases where it has not been possible to attribute either category A or B to a rock type. In most cases, this means that the layer in question has previously been designated as both minor and non-aquifer in different locations due to the variable characteristics of the rock type".

The bedrock deposits (Folkstone Formation and Hythe Formation) are classified as Principal aquifers, meaning "these are layers of rock or drift deposits that have high intergranular and/or fracture permeability - meaning they usually provide a high level of water storage. They may support water supply and/or river base flow on a strategic scale".

The bedrock deposits (Sandgate Formation) are classified as a Secondary A aquifer.

The bedrock deposits (Atherfield Clay Formation and Weald Clay Formation) are classified as Unproductive Strata, meaning "these are rock layers or drift deposits with low permeability that have negligible significance for water supply or river base flow".

The site is not situated in a source protection zone. The closest surface water feature is the East Stour River, which is located in the northern part of the site and is trending from east to west. A number of small streams and ponds feed into the East Stour River from across the site. A spring is located in the southeast part of the site. A flood risk zone, level 2 and 3, is located in the northern part of the site. This is associated with East Stour River [11].

3 FIELDWORK

3.1 General

Ground investigation works, reported herein, were carried out in a single phase between August 15th 2018 and September 06th 2018. The scope of the ground investigation is summarised in Table 3-1. The ground investigation methods were undertaken in general accordance with the principles set out in BS EN 1997-2:2007 [5] and with the general practice described in BS5930:2015 [6]. The investigation works were carried out under the supervision of a suitably experienced ground engineer who undertook the logging and reporting of the exploratory holes and in situ testing.

Location ID	Hole Type	Scheduled Depth (m)	Main Objectives			
BH201	RC		Investigate former inert landfill (depth of fill, contam,			
BH202	RC	10 m or 1 m into natural	stability).			
BH203	RC	ground	Investigate former spoil heap (depth of MG, contam, stability).			
BH204	RC	10.0	Investigate infiltration potential and current groundwater level. Infiltration test at 5m depth unless in groundwater.			
BH205		No	o access granted			
BH206	RC	10.0	Investigate infiltration potential and current groundwater			
BH207	RC	10.0	level. Infiltration test at 5m depth unless in groundwater.			
BH208	DS	10.0	Investigate infiltration potential and current groundwater			
BH209	DS	10.0	level.			
BH210		Omitted from	original scope by designer			
WS201	DS	5.0				
WS202	DS	5.0	Detect gas/gw contamination from industrial estate			
WS203	DS	5.0				
TP201	TP	4 on 0 5 into ton of	Investiate anomaly Z62			
TP202	TP	4 m or 0.5 m into top of natural ground	Investigate former inert landfill (depth of fill, contam, stability) Anomaly Z29			
TP203	TP					
TP204	TP	Approx. 1m to 2m below bund surface.	Investigate bund material			
TP205	TP					
TP206	TP	5 m or 0.5 m into top of natural ground	Investigate former spoil heap (depth of MG, contam, stability)			
TP207		C	hanged to HD201			

Otterpool Phase 2

Location ID	Hole Type	Scheduled Depth (m)	Main Objectives		
TP208	TP				
TP209	TP	0.5	Infilmation material DDF analysis to the		
TP210	TP	2.5	Infiltration potential. BRE soakaway test.		
TP211	TP				
TP212		No access granted			
TP213	TP				
TP214	TP	2.5	Infiltration potential. BRE soakaway test.		
TP215	TP				
TP216			TBC		
TP217	TP				
TP218	TP		Infiltration potential. BRE soakaway test.		
TP219	TP				
TP220	TP	2.5			
TP221	TP				
TP222	TP				
TP223	TP	-			
TP224		Omitted from	n original scope by designer		
TP225		Omitted from	n original scope by designer		
TP226	TP	2.5	Infiltration potential. BRE soakaway test		
TP227	TP	Approx. 1 to 2m below bund surface.	Investigate bund material		
TP228	TP	4m or natural ground	Investigate possible Made Ground (Zetica Z26 dense ferrous objects)		
HD201	HD ground investig	1.0	Contam samples from former rifle range		

Table 3-1 Initial ground investigation scope

Notes

TP = trial pitting, HD = hand dug trial pitting, WLS = windowless sampling, RC = rotary core drilling.

3.2 Exploratory Holes

3.2.1 Exploratory Hole Locations

The co-ordinates and elevations of the exploratory hole locations were obtained by the Arcadis supervising engineer using a Trimble VRS NOW GPRS system; allowing an accuracy of +/-50 mm.

Drawing 10011914-01-GLR-EHP-0001 presented in Appendix A displays the as-constructed exploratory hole locations while the co-ordinates and elevation of the ground surface at each exploratory hole location are given on the individual logs.

3.2.2 Investigation Methodology

The following methods and techniques were undertaken to construct the exploratory holes at the site. The completed scope of investigation is summarised in Table 3-2 below.

Details of the methods of investigation and associated standards adopted are presented in Appendix B; the exploratory hole records are presented in Appendix C, a key to the notation and symbols used on the logs is presented in Appendix B.

•							
Location ID	Hole Type	Start Date	End Date	Final depth (m)	Termination Reason		
BH201	RC	31-Aug- 2018	31-Aug- 2018	5.00	Target depth into natural ground.		
BH202	RC	29-Aug- 2018	30-Aug- 2018	10.50	Target depth.		
BH203	RC	28-Aug- 2018	29-Aug- 2018	10.50	Target depth.		
BH204	RC	3-Sep- 2018	4-Sep- 2018	10.00	Target depth.		
BH205			Or	nitted from scope			
BH206	RC	5-Sep- 2018	6-Sep- 2018	6.70	Designer's Instruction		
BH207	RC	6-Sep- 2018	6-Sep- 2018	5.00	Designer's Instruction		
BH208	RC	15-Aug- 2018	17-Aug- 2018	6.00	Health and Safety concerns		
BH209	RC	24-Aug- 2018	27-Aug- 2018	10.50	Target depth.		
BH210			Or	mitted from scope			
HD201	IP	29-Aug- 2018	29-Aug- 2018	1.00	Target depth.		
TP201	TP	23-Aug- 2018	23-Aug- 2018	3.40	Hard strata.		
TP202	TP	23-Aug- 2018	23-Aug- 2018	2.60	Hard strata		

Otterpool Phase 2

Location ID	Hole Type	Start Date	End Date	Final depth (m)	Termination Reason
TP203	TP	31-Aug- 2018	31-Aug- 2018	1.30	Hard strata
TP204	TP	30-Aug- 2018	30-Aug- 2018	1.90	Target depth.
TP205	TP	30-Aug- 2018	30-Aug- 2018	1.20	Ground instability
TP206	TP	31-Aug- 2018	31-Aug- 2018	0.70	Hard strata
TP208	TP	24-Aug- 2018	24-Aug- 2018	2.60	Hard strata
TP209	TP	24-Aug- 2018	24-Aug- 2018	2.35	Hard strata
TP210	TP	28-Aug- 2018	28-Aug- 2018	2.50	Target depth.
TP211	TP	28-Aug- 2018	28-Aug- 2018	2.05	Hard strata.
TP212			Or	nitted from scope	
TP213	TP	21-Aug- 2018	21-Aug- 2018	2.50	Target depth.
TP214	TP	20-Aug- 2018	20-Aug- 2018	2.40	Target depth.
TP215	TP	20-Aug- 2018	20-Aug- 2018	2.50	Target depth.
TP216			Or	nitted from scope	
TP217	TP	15-Aug- 2018	15-Aug- 2018	2.60	Target depth.
TP218	TP	16-Aug- 2018	16-Aug- 2018	2.70	Target depth.
TP219	TP	16-Aug- 2018	16-Aug- 2018	0.65	Metal pipe found at 0.65mbgl. Pit relocated to TP219A
TP219A	TP	16-Aug- 2018	16-Aug- 2018	1.60	Hard strata.
TP220	TP	17-Aug- 2018	17-Aug- 2018	2.50	Target depth.
TP221	TP	21-Aug- 2018	21-Aug- 2018	1.50	Hard strata.

Location ID	Hole Type	Start Date	End Date	Final depth (m)	Termination Reason
TP222	TP	22-Aug- 2018	22-Aug- 2018	1.65	Hard strata.
TP223	TP	29-Aug- 2018	29-Aug- 2018	2.60	Target depth.
TP224			Or	mitted from scope	
TP225			Or	mitted from scope	
TP226	TP	29-Aug- 2018	29-Aug- 2018	0.40	Hard strata.
TP227	TP	31-Aug- 2018	31-Aug- 2018	2.30	Target depth.
TP228	TP	29-Aug- 2018	29-Aug- 2018	1.70	Hard strata
WS201	WLS	30-Aug- 2018	30-Aug- 2018	3.50	Hard strata.
WS202	WLS	30-Aug- 2018	30-Aug- 2018	5.00	Target depth.
WS203	WLS	30-Aug- 2018	30-Aug- 2018	3.00	Hard strata

Table 3 2. Summary of completed exploratory holes

Notes

TP = trial pitting, HD = hand dug trial pitting, WLS = windowless sampling, RC = rotary core drilling.

3.2.3 Dynamic Sampling

Dynamic sampling was completed using a track-mounted sampling rig capable of driving windowless sampling tubes using a mechanical hammer dropped repeatedly from a self-governed height/hydraulic hammer drive head to advance window sample tubes into the ground.

The number of blows for the mechanical hammer was recorded together with a description of the recovered materials by the lead driller.

Photographs of the materials recovered are presented with the appropriate hole log. To enable a representative photographic record, the samples were split prior to the photograph and subsequently destructively logged.

Due to the method of investigation, the materials recovered within the sampler apparatus were generally disturbed and were assessed as complying with Class 3 to Class 5 of BS EN 22475-2. Sub-samples of the material recovered in the liners were taken to enable representative laboratory testing. Generally small disturbed samples were taken at each change in stratum and at 0.5 m intervals thereafter in clay soils; and small bulk samples were taken at 1 m intervals where the sand and gravel content of the soil was significant.

Standard penetration tests (SPT) were undertaken using the track mounted rig at 1.0 m centres, and 1.5 m centres below 5.0m until the termination depth of the hole. Cone penetration tests (CPT) were undertaken where SPTs were deemed inappropriate.

3.2.4 Rotary Drilling

Rotary core drilling was undertaken using a track mounted multiutility drilling rig. The drilling used standard PWF double-tube core barrels with a T6-116 type of bit and casing to produce core of 116 mm diameter. The boreholes were advanced using a compressed air mist.

Where the specified core recovery was not achieved, the length of core run was reduced on subsequent core runs until recovery improved.

Recovered cores were retained in appropriately sized semi-rigid plastic liner and placed in wooden core boxes for transport and logging. Photographs of each core box showing the recovered cores are presented with the appropriate rotary borehole log.

Sub-samples of core were removed from the core runs at intervals specified for subsequent laboratory testing, the location of the sub samples was indicated by placing wood sections to represent the core removed.

ROTARY DRILL SIZES

Size	Hole	Core
	mm	mm
T6 Series		
Т6-Н	99	79
T6-101	101.5	79
T6-116	116	93
T6-131	131	108
T6-146	146	123
WF Series	S	
HWF	99.2	76.2
PWF	120.6	92.1
SWF	146	112.8
UWF	173	139.8
412		
412F	107	74.7

3.2.5 Trial Pitting/Trial Trenches

Trial pits were undertaken using a mechanical back hoe excavator. Hand dug trial pits (HD) were conducted using hand digging tools. For the machine excavated pits, a JCB 3CX excavator was used and pits were entirely logged from the surface and arisings.

Samples of the material recovered in the trial pits were taken to enable representative laboratory testing. Generally small disturbed samples were taken at each change in stratum and at 0.5 m intervals thereafter in clay soils; and bulk samples were taken at 1 m intervals where the sand and gravel content of the soil was assessed as significant.

Photographic records of the trial pit elevation and arisings were taken and are presented with the associated trial pit log.

3.3 In situ Testing

3.3.1 Penetration Testing

3.3.1.1 Standard Penetration Tests

Standard penetration tests (SPT) were carried out as required in the investigation scope and in accordance with the methods given in the standard procedures presented within Appendix B. Generally tests were undertaken at regular intervals throughout the borehole to provide a profile of the soil's resistance with depth and a disturbed soil samples was recovered from the SPT split-spoon tool or a disturbed sample was taken over the range of the test interval.

The N-values as determined in the field are presented on the borehole logs as uncorrected values that do not take into account the energy losses or efficiency of the automatic trip hammer used to drive the test tool into the ground. The calibration certification for the test devices used in the investigation is presented in Appendix D.

3.3.2 Strength and Deformation Testing

3.3.2.1 Determination of undrained shear strength using Hand Vane apparatus

Hand shear vane tests were carried out using a Pilcon hand shear vane with a cruciform vane of 19 mm diameter. The tests were made in the sides of trial pits/base of the exploratory hole/in the end of recovered thin wall samples of suitable Quality Class as appropriate.

The test was performed in general accordance with the manufacturer's instructions and the vane was inserted a minimum distance of 70 mm below the surface tested. The vane head was rotated slowly at a speed not greater than 1 revolution per minute until the soil has failed in shear or the maximum reading of the device was achieved. For valid tests, the remoulded strength of the failed soil was determined by rapidly rotating the vane head for five complete rotations and allowing a minimum rest period of 3 minutes before reapplying torque to the vane.

The undrained soil strength was read directly from the calibrated vane head in kPa. It should be noted that these values are based on an empirical relationship derived by Pilcon from undrained triaxial compression tests on samples of London Clay.

Where possible, four tests were made to provide an average value, however, it should be noted that where natural fissures or discontinuities are present the minimum values may provide a better representation of the mass consistency of the soil and may be significant. A summary of the data collated is presented in Table 3-3.

Leasting ID	Location ID Toot don'th (m)		Test 1		Test 2		Test 3		Test 4	
Location ID	Test depth (m)	Peak	Rem	Peak	Rem	Peak	Rem	Peak	Rem	
WS201	2.20	20	10	22	10	N/A	N/A	N/A	N/A	
TP209	1.80	25	10	26	10	28	12	N/A	N/A	
TP213	1.00	35	30	N/A	N/A	N/A	N/A	N/A	N/A	
TP213	1.01	40	30	N/A	N/A	N/A	N/A	N/A	N/A	
TP213	1.02	60	50	N/A	N/A	N/A	N/A	N/A	N/A	
TP213	1.50	30	25	N/A	N/A	N/A	N/A	N/A	N/A	
TP213	1.51	40	35	N/A	N/A	N/A	N/A	N/A	N/A	
TP213	1.52	50	45	N/A	N/A	N/A	N/A	N/A	N/A	
TP213	2.00	50	42	N/A	N/A	N/A	N/A	N/A	N/A	
TP213	2.01	60	48	N/A	N/A	N/A	N/A	N/A	N/A	
TP213	2.02	55	48	N/A	N/A	N/A	N/A	N/A	N/A	
TP217	1.50	44	20	35	20	N/A	N/A	N/A	N/A	
TP217	1.70	56	28	56	28	30	28	N/A	N/A	
TP220	1.40	30	10	N/A	N/A	N/A	N/A	N/A	N/A	

TP220	1.80	44	20	N/A	N/A	N/A	N/A	N/A	N/A
TP220	2.50	50	20	N/A	N/A	N/A	N/A	N/A	N/A

Table 3-3 Summary of hand vane shear strength field test data

Due to the nature of the samples tested, the results are indicative for assistance in determining soil consistency for logging purposes only and should not be used to classify soil strength.

3.3.3 Hydraulic Tests

3.3.3.1 Soakaway Tests

The soil infiltration rate was determined by conducting a soakaway tests in accordance with the methodology described in BRE 365 [4]. The tests were conducted in trial pits dug to the anticipated soakaway depth. Summary information of the tests is presented in Table 3-4 while detailed test sheets are presented with the relevant trial pit log in Appendix C.

Location ID	Depth of pit (m)	Soil Infiltration Rate f ms-1	Comments
TP210	2.50	Not permeable	
TP211	2.05	Not permeable	Minor collapse.
TP213	2.50	No valid data	Test erminated after 85min due to lack of soakage.
TP214	2.40	Not permeable	Test terminated due to soil collapse after 33 min
TP215	2.50	Not permeable	
TP217	2.60	No valid data	Test terminated after 75 min due to lack of soakage.
TP218	2.70	No valid data	Test terminated after 60 min due to lack of soakage.
TP219A	0.65	2.09E-06	
TP220	2.50	No valid data	Test terminated after 20 min due to lack of soakage.
TP221	1.50	5.42E-09	
TP222	1.65	6.85E-09	
TP223	2.60	Not permeable	Test terminated after 60 min due to lack of soakage.

Table 3 4 Summary of trial pit soakage tests

3.3.4 VOC Head Space Screening

The presence of Volatile Organic Compounds (VOC) within the ground and groundwater was determined using a photoionization detector (PID) to detect the 'headspace' vapours emitted by the compounds. The method is applicable to a wide range of compounds that have sufficiently high volatility to be effected liberated from the soil or water matrix in normal temperature and pressure ranges.

The headspace test was undertaken on the freshly extracted soil core sample at regular intervals of 1 m by placing a small amount of material into a screw-top glass jar so that the jar was not more than half-full. The jar opening was covered with an aluminium foil sheet and the lid screwed on to form an air-tight seal. The sample and jar were then shaken for about 15 seconds to break-up and disperse the soil before resting the sample for about 5 minutes.

To assess the headspace vapour, the jar lid was removed and the PID inlet tube was inserted through the foil into the headspace area. The PID reading recorded was the highest response observed in the first 10 seconds. The screening results are presented on the relevant exploratory holes logs within Appendix C.

The testing was undertaken using a make and model PID with a 10.6 eV lamp.

3.4 Installations and Post-fieldwork Monitoring

3.4.1 Installations

Installations to enable long term land gas and groundwater monitoring monitoring of the site were made in those boreholes selected by Arcadis Consulting (UK) Ltd and the details are summarised in Table 3-5 and are also provided on the relevant borehole logs.

Location ID	Installation Type	Response Zone Top m bgl	Response Zone Base m bgl	Comments / limitations
BH201	SP50	1.00	5.00	Plain: GL-1.00m, Slotted: 1.00m - 5.00m
BH202	SP50	1.00	10.00	Plain: GL-1.00m, Slotted: 1.00m - 10.00m
BH203	SP50	2.00	3.00	Plain: GL-2.00m, Slotted: 2.00m – 3.00m
BH204	SP50	3.00	10.00	Plain: GL-3.00m, Slotted: 3.00m - 10.00m
BH206	SP50	1.50	6.70	Plain: GL-1.50m, Slotted: 1.50m – 6.70m
BH207	SP50	1.00	5.00	Plain: GL-1.00m, Slotted: 1.00m - 5.00m
BH208	SP50	2.00	6.00	Plain: GL-2.00m, Slotted: 2.00m - 6.00m
BH209	SP50	1.00	10.00	Plain: GL-1.00m, Slotted: 1.00m – 10.00m

Table 3 5 Summary exploratory hole installations

Notes

SP50 = 50mm standpipe piezometer

3.4.2 Post-fieldwork Monitoring

Post-field work monitoring was undertaken on separate visits on 19th September 2018, 26th September 2018 and 11th October 2018. The three visits to the site were made to record land gas emissions and groundwater levels. During the first monitoring visit (19th September 2018), after completion of the land gas emission monitoring, the well was purged by removing five well volumes of groundwater, where possible and *in situ* groundwater monitoring and sampling was undertaken. Where installations were purged dry, monitoring and sampling was conducted on groundwater recovered following recharging of groundwater in installations. Parameters measured during *in situ* monitoring were pH, dissolved oxygen, conductivity and redox potential.

Four installations from the first phase could not be monitored due to accessibility (gas tap misplaced or flush cover not possible to be opened). The results of the groundwater and land gas monitoring are presented within Appendix E.

4 LABORATORY TESTING

4.1 General

Geotechnical and geo-environmental chemical testing was undertaken on selected samples obtained from the exploratory holes. The testing was scheduled by the geotechnical and/or geo-environmental engineer and the testing was undertaken by an Arcadis approved testing laboratory.

4.2 Geotechnical Laboratory Testing

The geotechnical tests detailed in Table 4-1 were carried out in accordance with either BS1377:1990: Parts 1 to 8 [7]; BS EN ISO 17892: Parts 1 to 12 [8]; or other methods as listed in Table 4-1. The complete results of the geotechnical laboratory testing are presented in Appendix F

Test	Method	No of Determinations
Moisture content	BS1377 Pt2-3.2	14
4-point liquid and plastic limit	BS 1377 Pt2-4.3 & 5.3	10
Particle Size Distribution - Wet sieving	BS1377 Pt2-9.2	10
Unconsolidated Undrained Triaxial	BS1377 Pt7-8/9	1
Point Load Strength	ISRM: 2007	3
California Bearing Ratio	BS1377 Pt4-7	2
Dry Den/MC (2.5kg Rammer Method 1 Litre Mould)	BS1377 Pt4-3.3	2
pH, water soluble nitrate, water soluble chloride, water soluble sulphate, total sulphate, total sulphur, ammonium, magnesium	BRE SD1 preferred methods	5

Table 4-1 Summary of geotechnical test data

4.3 Geo-Environmental Laboratory Testing

Geo-environmental tests were undertaken on soil, groundwater and prepared leachate specimens obtained from the samples collected from the site. Testing was carried out for the contaminants detailed in Table 4-2, Table 4-3 and Table 4-4. The results of the chemical laboratory testing are presented in Appendix G. Details of the test methodology is presented with the test results.

Test type	Method	No of Determinations
Metals (As, B, Cr, Cd, Cu, Pb, Hg, Ni, Se, Zn), pH	Induced Coupled Plasma Optical Emission Spectroscopy (ICP-OES);	47
Hexavalent Chromium, Free Cyanide & Total Cyanide	Calorimetry	47
Speciated Polycyclic Aromatic Hydrocarbon compounds (PAH)	Gas Chromatography –Mass Spectrometry (GC-MS)	47

Otterpool Phase 2

Total Petroleum Hydrocarbon Criteria Working Croup (TPH CWG)	Gas Chromatography – Mass Spectrometry (GC-MS) / Flame Ionisation Detector (GC-FID)	47
Benzene, Toluene, Ethylbenzene, Total Xylenes (BTEX) and MTBE	GC-MS	41
Total Organic Carbon	BS1377 Pt 3 - Chemical and Electrochemical Tests	43
Monohydric Phenols	Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar)	47
Asbestos Identification	HSG 248	47

Table 4-2 Summary of geo-environmental test data – soil matrix

Test type	Method	No of Determinations
Metals (As, B, Cr, Cd, Cu, Pb, Hg, Ni, Se, Zn), pH, Speciated PAH, Cyanide Free & Total	ICP-OES	7
PAHs	GC-MS	7
TPH CWG	GC-FID	7
VOCs & SVOCs	GC-MS	7

Table 4-3 Summary of geo-environmental test data – groundwater matrix

Test type	Method	No of Determinations
Alkalinity	In house method based on MEWAM & USEPA Method 310.2.	3
Hexavalent Chromium, Free Cyanide & Total Cyanide	Calorimetry	3
Speciated Polycyclic Aromatic Hydrocarbon compounds (PAH)	Gas Chromatography –Mass Spectrometry (GC-MS)	3
Total Phenols	Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar)	2
Total Petroleum Hydrocarbon Criteria Working Croup (TPH CWG)	Gas Chromatography – Mass Spectrometry (GC-MS)	3
Benzene, Toluene, Ethylbenzene, Total Xylenes (BTEX) and MTBE	GC-MS	3

Table 4-4 Summary of geo-environmental testing data - leachate

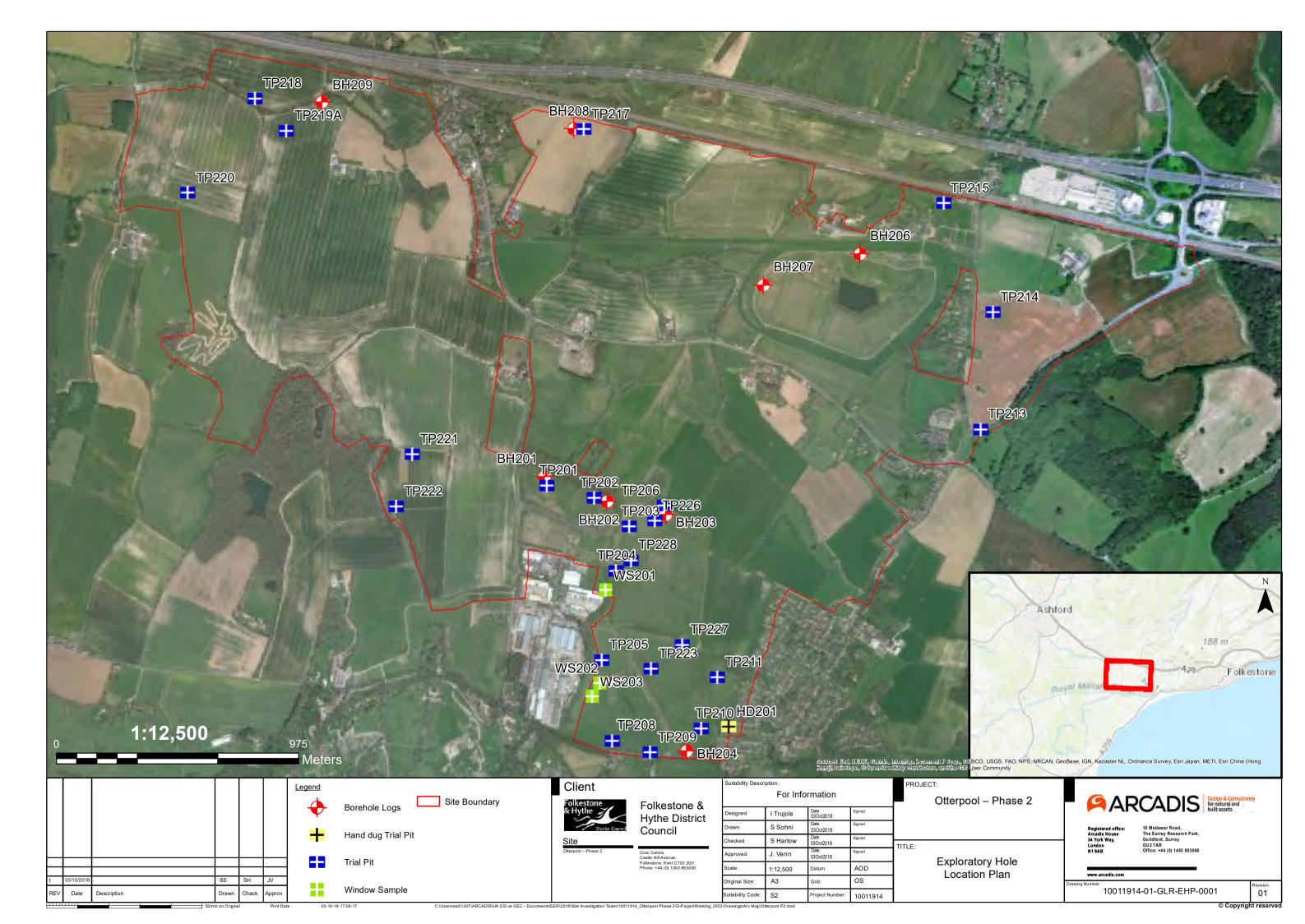
5 REFERENCES

General References

- 1. Peterbrett Associates.2008. Report on Hydrogeological Assessment. Peterbrett Associates Report 6952 JC ab. Oct 2008.
- 2. Arcadis Consulting. 2017. Ground Investigation Factual Report. Arcadis Consulting Report UA008926-43--AFS-GLR-G001. Dec 2017.
- 3. British Geological Survey. 1990. Folkstone & Dover. England and Wales Sheet 305 & 306. Bedrock and Drift Deposits. 1:50 000. BGS Keyworth, Nottingham.
- 4. Building Research Establishment. 2016. Soakaway Design. BRE Digest DG365. BRE, Watford.

National Standards

- 5. BS EN 1997-2. 2007. *Incorporating corrigendum June 2010.* Eurocode 7: Geotechnical Design. Part 2 Ground Investigation and testing. British Standards Institution.
- 6. BS 5930. 2015. Code of practice for ground investigations. British Standards Institution.
- 7. BS 1377. 1990 & 2016 as amended. Method of test for soils for civil engineering purposes. Published in 9 Parts. British Standards Institution.
- 8. BS EN ISO 17892-1: Geotechnical investigation and testing Laboratory testing of soil Determination of water content. British Standards Institution.


Internet References

- British Geological Survey: http://www.bgs.ac.uk/data/mapViewers/home.html. Accessed Oct 2015.
- 10.Natural England Magic Map http://www.magic.gov.uk/MagicMap.aspx Accessed June 2018
- 11.Flood Map For Planning https://flood-map-for-planning.service.gov.uk Accessed June 2018
- 12. Coal Authority, http://mapapps2.bgs.ac.uk/coalauthority/home.html Accessed July 2018

APPENDIX A

DRAWINGS

Drawing 10011914-01-GL R-EHP-0001: Exploratory Hole Location Plan

APPENDIX B

STANDARD PROCEDURES

B0 General Principles

This ground investigation was undertaken in general accordance with the principles of BS EN 1997-1 [1] and BS EN 1997-2 [2] and the advice given in BS5930:2015 [8], which, provides complimentary guidance on the application of the primary standards. Where the requirements of the ground investigation specification differ from these primary standards, the investigation methodology was adapted as required and specific notes regarding methods and techniques employed were made in the appropriate report sections.

B1 Buried Services

Service clearance was undertaken in accordance with Arcadis' Safety, Health and Environment (SHE) Standard – Avoidance of Sub-Surface Hazards and Structures Standard. This document details the methods and safe working practices used to undertake excavations safely. Prior to breaking ground, services plans were consulted and the area scanned using a Cable Avoidance Tool (CAT) with detected signals marked on the ground. For all investigation positions, other than for machine excavated trial pits, hand excavated inspection pits are completed to 1.20 m bgl prior to the use of drilling and boring plant.

B2 Sampling requirements

The selection of sample types and sampling techniques has been chosen to take account of the soil fabric, size and quality of sample required based on whether the soils mass properties or the intact material properties of the ground are to be determined in subsequent laboratory tests. BS EN ISO 22475-1 [4] describes three generic sample groups that are:

- a. Sampling by drilling. Generally a disturbed sample recovered from the drilling tool or digging equipment, typically meeting Class 3 to Class 5 requirements, with the recovered material being stored in bulk bags or sealed jar or tub containers.
- b. Sampling by sampler. Typically referred to as open tube or drive sampling in which a tube with a sharp cutting edge is driven into the ground either by static thrust or dynamically driven to give a relatively undisturbed sample of Class 1 or Class 2 but may result in a Class 3 sample.
- c. Block sampling. Cylindrical large diameter samples or cuboid hand-cut samples usually relatively undisturbed Class 1 and Class 2.

The open-tube sampling equipment used on the site was of a type and design that conformed to BS EN ISO 22475-1. For the purpose of this ground investigation block sampling was not required.

Generally samples were assessed on site and any unexpected deterioration in sample quality was reported to the ground engineer by the lead drilling technician.

Sufficient and representative samples were taken to allow the geo-mechanical properties of the ground to be adequately characterised and to enable the sequence of soil strata to be described by an engineering geologist or geotechnical engineer.

Where samples have been taken for chemical tests the drilling method attempted to adopt dry drilling over the sampling range that generally was achieved by the use of drill casing to separate and isolate the upper soil layers and exclude groundwater. Cross-contamination was further reduced by regular cleaning of sampling tools. Sample integrity was maintained by sealing samples immediately on collection and storing the samples in a temperature controlled cool box. Samples were despatched from the site at the end of the shift on which they were collected or as

required in the project specification. Details of best practice storage, preservation and decontamination measures undertaken are given below:

Task	Soil	Groundwater	Ground Gas
Storage	Glass jars and vials supplied by the laboratory were used for the collection of soil samples to be analysed for volatile compounds. Plastic one-litre tubs were used to collect soil samples for metals analysis.	Glass vials supplied by the laboratory were used for the collection of samples to be analysed for volatile compounds. Samples to be analysed for lower volatility compounds were stored in laboratory prepared glass bottles.	1.4L Canisters supplied by the laboratory.
Preservation	Filling of sample containers as headspace and low storage te potential for volatilisation and laydrocarbon compounds prior	oiodegradation of petroleum	Not required.
Decontamination	Disposable gloves were worn and changed between sample collection to prevent cross-contamination.	Groundwater samples were collected using dedicated disposable tubing / bailers, that were changed between monitoring well locations in order to prevent crosscontamination.	Disposable gloves were worn and changed between sample collection to prevent cross contamination.
Transport	and analytical requests were r	ample boxes provided by the laborecorded on the laboratory chain coing to laboratory for analysis. Sar sampling.	of custody form included

B3 Sample description

Sample description was undertaken by the Arcadis site geologist in accordance with BS 5930: 2015. The descriptions of the individual samples were used to identify the sequence of strata at the exploratory hole location and from which representative exploratory hole logs were drawn.

B4 In situ testing

In situ geotechnical tests were undertaken taking account of the investigation scope and requirement to attain the appropriate parameters required in the geotechnical design. The tests were undertaken in accordance with the requirements of the relevant parts of BS EN ISO 22476 [5, 6, 7] and other methods as follows:

Dynamic probing

Dynamic probes were undertaken in general accordance with BS EN ISO 22476-2, BS EN 1997-2 and the national annex to BS EN 1997. The tests were generally made using the super-heavy DPSH-B configuration of the apparatus, however, it should be noted that the basis for selection of the type of dynamic probe should be a consideration of the driving energy in relation to the type of ground conditions anticipated at the site.

Where adequate correlation with borehole data is available an interpretation of the estimated soil type may be made, however, it should be noted that probing can give unreliable results in mixed soils.

Standard penetration testing

Standard penetration tests were carried out in accordance with BS EN ISO 22476-3, BS EN 1997-2 and the national Annex to BS EN 1997-2. The test records are presented on the borehole logs as blow counts for each increment with the N-value as the total number of blows of the four main test increments.

Where the N-value exceeds a total of 50 blows, the test reports the penetration in millimetres for the last test increment recorded, and the N value is indicated as greater than 50,

e.g. 4,5/12,14,18, 6 for 10 mm

indicates that the seating blows (4 and 5) were completed and that the test terminated in the 4th increment after penetrating 10 mm.

Where the seating blows exceeded 25 blows for less than 150 mm; the test was stopped and the rods remarked after which, the main drive was continued. The test is then reported as the number of blows in each seating drive for the recorded penetration with the results of the main drive given as above.

e.g. 14/11 for 45 mm/12,14,16, 8 for 10 mm.

In certain circumstances where groundwater in-flow may affect the test, particularly in fine sand or silt, low SPT blow counts may be recorded. Where the SPT blow count was very low, N values of 5 or less, the test was, at the discretion of the site engineer, continued for a further 300 mm, recording blows for each 75 mm increment. **This is not** a standard penetration test value, it does however give an indication of potential disturbance to the ground.

California Bearing Ratio

In situ California Bearing Ratio (CBR) tests were carried out in general accordance with the requirements of BS 1977-9:1990, 4.3 [10]. The CBR is a strength test that is generally concerned with pavement design and the control of pavement sub grade construction, as such it is a test that is most suited to soils with a maximum particle size not exceeding 20 mm.

TRL Dynamic cone penetrometer

The TRL DCP is a device developed by the TRL to assess the California Bearing Ratio of road sub-base by correlation. As such the device was developed for use in a limited range of soil types. The test has no formal standard the test methodology and its use is discussed in TRL report PR IN 277-04 [Error! Reference source not found.].

B5 Data transfer format

The data collated during the ground investigation has been organised and managed using the "AGS data format" that allows data transfer between different disciplines and organisations in accordance with BS 8574 [9].

B6 References

- 1. BS EN 1997-1. 2004. Eurocode 7: Geotechnical Design. Part 1 General Rules. British Standards Institution, 2013 (revised text).
- BS EN 1997-2. 2007. Eurocode 7: Geotechnical Design. Part 2 Ground Investigation and testing. British Standards Institution, 2010 (revised text).
- 3. BS EN ISO 22282-1:2012. Geotechnical investigation and testing Geohydraulic testing. Part 1: General Rules. British Standards Institution.
- 4. BS EN ISO 22475-1. Geotechnical investigation and testing Sampling methods and groundwater measurements Part 1 Technical principles for execution.
- BS EN ISO 22476-1:2015. Geotechnical investigation and testing Field testing Part 1: Electrical cone and piezocone test. British Standards Institution
- BS EN ISO 22476-2. Geotechnical investigation and testing Field testing Part 2: Dynamic Probing. British Standards Institution
- BS EN ISO 22476-3 2005. Geotechnical investigation and testing Field testing Part 3: Standard penetration test. British Standards Institution
- 8. BS 5930: 2015. Code of practice for ground investigation. British Standards Institution.
- BS 8574. Code of practice for the management of geotechnical data for ground engineering projects.
- 10. BS 1377-9. 1990. Methods of test for soils for civil engineering purposes. Part 9: In-situ tests. British Standards Institution.

B7 Exploratory Hole Key

Key to Exploratory Hole Symbols and Abbreviations

SAMPLE TYPES

B Bulk disturbed sample ES Environmental soil sample U Undisturbed sample

C Core sample EW Environmental water sample UT Undisturbed thin wall sample

CBR-D Disturbed sample from CBR test area G Gas sample W Water sample

CBR-U Undisturbed sample from CBR test area L Liner sample

D Small disturbed sample SPT SPT split spoon sample

IN-SITU TESTING

SPTs Standard Penetration Test (using a split spoon sampler)SPTc Standard Penetration Test (using a solid 60 degree cone)

N Recorded SPT 'N' Value *

-/- Blows/Penetration (mm) after seating blows totalling 150 mm

MX Mexi Probe Test (records CBR as %)

HV Hand Shear Vane Test (undrained shear strength quoted in kPa)

HP Hand Penetrometer Test (kg/m³)

() Denotes residual test value

PID Photo Ionisation Detector (ppm) *

Kf/Kr Permeability Test (f = falling head, r = rising head quoted in ms⁻¹)

HPD High Pressure Dilatometer Test (pressure meter)

PKR Packer / Lugeon Permeability Test

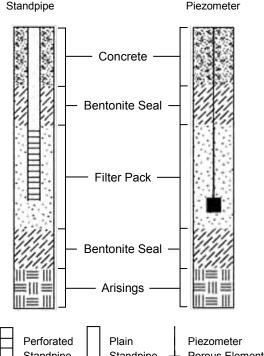
CBR California Bearing Ratio Test

ROTARY CORE DETAILS

TCR Total Core Recovery, %

SCR Solid Core Recovery, %

RQD Rock Quality Designation (% of intact core >100 mm)


FI Fracture Spacing (average fracture spacing; in mm, over indicated length

of core) * *

NI Non-Intact Core

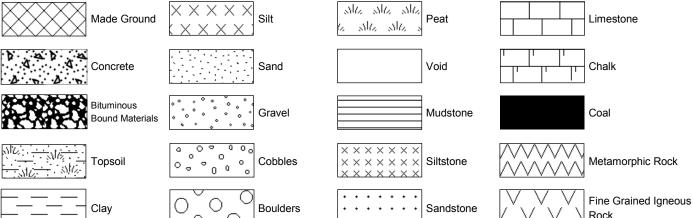
AZCL Assumed Zone of Core Loss

INSTALLATION & BACKFILL DETAILS

GROUNDWATER

Groundwa

Groundwater strike



Standing water level after 20 minutes; 1st, 2nd etc (number denotes level order)

STRATUM BOUNDARIES

Unit boundary

STRATA LEGENDS - Note: Composite strata types are shown by combining symbols

^{*} Where a single value is quoted this is the uncorrected 'N' value for a full 300 mm test drive following a seating drive of 150mm. Where the full test drive penetration is not achieved the number of blows is quoted for the penetration below the test total of 300mm, e.g.: 50/75.

APPENDIX C

EXPLORATORY HOLE LOGS

Otterpool Phase 2
Client

Folkestone and Hythe District Council

Project No. 10011914 Easting (OS mE) 611070.82 Ground Level (mAOD) 97.22 Northing (OS mN) 136130.16 Start Date 31/08/2018 End Date 31/08/2018

Scale 1:50 Sheet 1 of 1

SAM	/IPLES			TESTS		DF	RILL LC)G	. "	PROG	RES	s				STRATA	4								=
Depth	Tyr			Results	S			Flush Rtn%	Water Strikes	Date Tim	Cas	sing ater			Des	cription				Legend	Depti (Thickne			Inst Bac	kfill
0.00 - 0. 0.00 - 0. - 0.30 - 1. - 0.50 - 0.	30 ES 20 B	1		<1ppm <1ppm		.45%	maxy			31/08/201 08:0	8	\ \[\frac{1}{5}	Firm to stiff be coarse. [TOPSOIL] Soft to firm lig coarse.			•			_	× × × × × × - ''' - ''	(0.30		96.92	4 ×	÷.
- - - - - 1.20 - 1. - 1.20 - 2.				N=4 (1,1/1,1,1,1) <1ppm									coarse. [HEAD DEPC	OSITS]						X X X X X X X X X X X X X X X X X X	(2.00))			
- - 1.90 - 2.	00 ES	6 PID		<1ppm		80													(× × × × × × × × ×		+			
- 2.30 - 2. - 2.30 - 2. - 2.50 - 2. - 2.50 - 3.	50 ES	7 8 SPT((S)	<1ppm N=17 (3,4/3,3,5,6) <1ppm	, _							\ 8 	Medium dens clayey fine to subrounded r [HEAD DEPO	mediu medium OSITSI	m SAN n flint.	D. Grave	l is subar	ngular to		× × ×	2.30 (0.20 2.50))	94.92 94.72		
-						100						l k	Medium dens brown and lig stained band: [HEAD DEPC	se multi ht grey s.					on		(1.20))			
- 3.50 - 3. - 3.70 - 4.		PID	`	N>50 (1 for 0mm/ for 0mm) <1ppm	4			80				F	Weak light gr Fractures are subvertical, ro	extren	nely clo	sely to cl					3.70	,	93.52		
						75 25	10 10 20						[HYTHE FOR Recovered	RMĂTIC	N]		gular fine	to mediur GRAVEI			(1.30))			
										31/08/201 18:0	8 :	2.00								<u>: : : : : : : : : : : : : : : : : : : </u>	5.00	, ‡	92.22		1
																						+			
																						+			
-																						ļ - - -			
																						‡ !			
																						+			
DR	RILLING	TECHN	IQU	E	FLUS	SH DE	TAILS			W	ATER	OBSE	RVATIONS			HOL	E/CASIN	G DIAME	TER		WA	TER A	DDE	D	
Depth Top			Type	From	To	Rtn	- 1	sh Type	Date/	Time S	trike At	Time Elap	psed Rise To	Casing	Sealed	Hole Dia.	Depth	Casing Dia.	De		From	То	Vo	lume ((ltr)
0.00 1.20 3.50	1.20 3.50 5.00	Dynam	ection nic Sa ary Co	ample	4.50	80	A	ir mist								116	5.00	128 128	3.5 5.0						

Remarks

Terminated at scheduled depth. Groundwater not encountered.

Termination Depth: 5.00m

ARCADIS Borehole Photography Sheet

BH201

Otterpool Phase 2

Folkestone and Hythe District Council

10011914 Easting (OS mE) 611070.82

97.22 Northing (OS mN) 136130.16

Ground Level (mAOD)

Start Date 31/08/2018 End Date 31/08/2018

[EXPLORATORY HOLE NUMBER 201: 1.20m-4.00m]

[EXPLORATORY HOLE NUMBER 201: 1.20- 4.00m SPLIT]

Project
Otterpool Phase 2
Client

Folkestone and Hythe District Council

Project No. **10011914** Easting (OS mE) **611321.53**

Ground Level (mAOD) **97.15**Northing (OS mN) **136031.17**

Start Date 29/08/2018 End Date 30/08/2018

Scale 1:50 Sheet 1 of 2

_				_			_														_	_	=
SAMPLI Depth	Type/ No.	Type/ No.	TESTS Results	SC	R% F	21/0	Flush Rtn%	Water Strikes	PROGE Date Time	Casing Water					STRAT			Le	egend	Depth (Thicknes	Leve		stall/ ackfil
_ 0.00 - 0.20 - 0.20	ES1 ES	PID PID	<1ppm <1ppm						29/08/2018 08:00			rass over da AND, with al					medium	112	· · · · · · ·	(0.20) 0.20	96.9	5 .	
- 0.20 - 0.60 - 0.20 - 0.60	B2 ES3										\r	OPSOIL] ADE GROU					avelly	-⁄ ∑	XX	(0.40)		Ä	9
- - 0.60 - 0.80	B4	PID	<1ppm								cla	ayey fine SA	ND. Gra					<u>ک</u>	XX	0.60	96.5	55	7
- 0.60 - 0.80 -	ES5										Lo	edium sands oose very lig	ht mottle					/년			İ	K.	
_												edium SANI ngular to sub						- 1	-		+		H
- 1.20 - 1.50 - 1.20 - 1.80	ES7 D6	SPT(S)	N=4 (1,0/1,1,1,1)								Co	obbles are s /EATHEREI	ubangul	lar to	subround	ded sands	stone.	3	-				Ħ٩
- =											"	VEXITIENCE	,,,,,,,,,		NIVIATIO	•1		1	-	(1.70)	‡		Ħ٠̈́
-				9	1													-			†		Ħ٠
_																		7			1	·	Ħ٠;
- -																		-	-				ď٠
- -		SPT(S)	N>50 (1,4/3,5,7,35 for 45mm)				0					rong light gr						:		2.30	94.8	5	H:
-											wit	th 100mm v th light grey	ertical q and bro	juartz own fir	veining a ne SAND	at top. Into). Fractur	erbedded es are	1:			ţ	۰	H.
-					80						clo	osely to wide YTHE FORI	ly spac	ed, ve	erticaL, ro	ough, plai	nar.			•	Ī		Η.
- -											"			•1		N	o recovery.	<u> </u>			+		Η.
- -		SPT(S)	N>50 (25 for															4:			‡		Π.
- 3.40 - 3.80 - 3.40 - 3.80	C10 U10	` ′	40mm/40,10 for 15mm)															:	: : :	:	‡		Д.
-			,		90													:		:	†		Д [;]
- - _					10											N	o recovery.	- ∶			1		H÷
-																		\exists		•	1		Н:
-									29/08/2018	2.00								Д:	: : :		-		Ħ۶
<u>-</u>									18:00 30/08/2018)						Non intact	기:	: : :		†		Ħ٠
					.				08:00	4.00											†	l°	d:
_				2	0															•	†	···	Ħ:
																			: : :		Ī		H:
																	Non intact	 :		•	Ī		Η.
5.70 - 5.80	C11					40 40												긕:		(6.80)	-		П.
				10	00	60												:			‡		Π.
-					50													:			†		₫:
																		:	: : :		†		d,
-																N	o recovery.	\neg $ $:			†		Ц,
																				•	†		Н,
-					0																‡		H
				'	0														: : :		†		Ħ۶
- 7.50 - 7.77	C12																	٩٠			Ī	·	d:
7.50 - 7.77	U12																	:			Ī	°	d:
																		•	: : :				H:
_																		•	: : :	•	†		H:
					33 27													:			†		Н:
																		:	: : :		Ŧ		A,
																		:]	-		Ħ.
8.90 - 9.10	C13																	•	: : :	:	‡		Д.
9.10 - 9.25 9.25 - 9.50	D8 D9											eathered SA	NDST	ONE r	ecovered	as brow	n fine	1:		9.10 (0.15) 9.25	88.0	1. **	d,
				_	66						/[H.	AND. IYTHE FORI						/:		3.23	1 07.8		Д [;]
					20							eathered SA AND.	NDST	ONE r	ecovered	as bluisl	n grey fine			(1.25)	Ī		d;
												YTHE FOR	MATION	1]		N.	lo recovery.	긔:] `	†		H
-																IN	o recovery.	—l∙	:::	:	+		
		CHNIQL				ΓAILS						RVATIONS			HOL	E/CASIN	IG DIAMET	ER		WATI	RADD	ED	
Depth Top Depth I		Type		To 0.50	Rtn %	- 1	sh Type ir mist	Date	/Time Stri	ke At Time	Elapse	ed Rise To	Casing S	Sealed	Hole Dia.	Depth 10.50	Casing Dia.	Depth 2.00		From	То	Volum	e (Itr)
1.20 2.3 2.30 10.5	0	Dynamic S Rotary C	ample	3.30	5	^									110	10.50	""	00					
Remarks	\perp																						
CHIMIKS																							

Remarks

Terminated at scheduled depth. Groundwater not encountered.

Termination Depth: 10.50m

Project
Otterpool Phase 2
Client

Folkestone and Hythe District Council

Project No. 10011914 Easting (OS mE) 611321.53

Ground Level (mAOD) 97.15 Northing (OS mN) 136031.17

Start Date **29/08/2018** End Date 30/08/2018 Scale **1:50** Sheet 2 of 2

SAMPI Depth	Type No.	/ Type/ No.	Results	TCI SCI RQI	R% FI R% a D% m	(min save nax) Flus Rtn	Water Strikes	PROGE Date Time	Casing Water	Weathered S	ANDSTONE r	STRATA cription ecovered		grey fine	Leger		ss) Leve	Dackii
				RO		ian)		30/08/2018		Weathered S		ecovered	as bluish	grey fine	· :::			
								30/08/2018		SAND.					1:::	: 1	t	
								30/08/2018			RMATION]						1 000	5
								17:00	2.00 8.00							10.50	+ 86.6	3
																	Ī	
																	+	
																	ł	
																	1	
																	1	
																	†	
																	†	
																	‡	
																	‡	
																	‡	
																	‡	
																	†	
																	†	
																	‡	
																	†	
																	†	
																	Ŧ	
																	-	
																	Ŧ	
																	I	
																	Ī	
																	1	
																	1	
																	†	
																	†	
																	‡	
																	‡	
																	†	
																	†	
																	†	
																	‡	
																	‡	
																	†	
																	Ť	
																	1	
																	Ŧ	
																	ł	
																	1	
																	1	
																	-	
																	+	
																	†	
																	‡	
																	‡	
																	†	
																	†	
וופח	LINGT	ECHNIQU	le l	FLUSH	1 DET	ΔΙΙ S	1	\\\\	ER OP	SERVATIONS		пО	E/CASINI	G DIAME	TER	\\\\	ER ADD	<u> </u>
th Top Dept	oth Base	Туре	From	То	Rtn %	Flush Typ			(e At Time I		Casing Sealed		Depth	Casing Dia.	Depth	From		√olume (It
0.00 1 1.20 2 2.30 10	1.20 2.30 0.50	Inspection Dynamic S Rotary C	n Pit 2.30 ample	10.50	0	Air mis						116	10.50	130	2.00			
.30 10	0.50	Rotary C	core															

Unless otherwise stated: Depth (m), Diameter (mm), Time (hhmm), Thickness (m), Level (mAOD).

Terminated at scheduled depth. Groundwater not encountered.

Equipment Used

Contractor

10.50m Checked By Logged By

Termination Depth:

МТ SH

ARCADIS Borehole Photography Sheet

BH202

Otterpool Phase 2

Folkestone and Hythe District Council

Job No 10011914 Easting (OS mE) 611321.53

97.15 Northing (OS mN) 136031.17

Ground Level (mAOD)

Start Date 29/08/2018 End Date 30/08/2018

[EXPLORATORY HOLE NUMBER 202: 1.20m-8.90m]

[EXPLORATORY HOLE NUMBER 202: 1.20-8.90m SPLIT]

ARCADIS Borehole Photography Sheet

BH202

Otterpool Phase 2

Folkestone and Hythe District Council

Job No 10011914 Easting (OS mE) 611321.53

97.15 Northing (OS mN) 136031.17

Ground Level (mAOD)

Start Date 29/08/2018 End Date 30/08/2018

[EXPLORATORY HOLE NUMBER 202: 8.90m-10.00m]

[EXPLORATORY HOLE NUMBER 202: 8.90m-10.00m SPLIT]

Project
Otterpool Phase 2
Client

Folkestone and Hythe District Council

Project No. 10011914 Easting (OS mE) 611559.58

Ground Level (mAOD) **95.65**Northing (OS mN) **135977.57**

Start Date **28/08/2018** End Date **29/08/2018**

Scale 1:50 Sheet 1 of 2

SAM	PLES	3		TESTS			ILL LO	G	- s	PRO	GRE	SS					STRAT	A								
Depth		ype/ No.	Type/ No.	Results	SC	R%	I (min ave max)	Flush Rtn%	Water Strikes	Date Tir		Casing Water				Des	cription				Legend	Dept (Thickne		evel	Inst Bac	
- - 0.20 - 0.3	80	ES1	PID	<1ppm						29/08/20 09:	018 :00		ro	oft brown slootlets. Grav							alk alk	(0.50	· T		4 × 4	4.0
- 0.70 - 0.70 - 0.7 - 0.70 - 1.1 - 1.00 - 1.1	'6 0	ES2 B4	PID PID	<1ppm									sl	IADE GROU lightly grave vith occasion oarse. Grav Band of o	lly slig nal cha el is su	htly san rcoal po ibangula	dy becor ockets (3) a <u>r to sub</u> approxin	ning sand mm). San rounded f nately 8 c	dy CLAY nd is fine t fine flint. m. Possib	oly		(0.70))			
- - - 1.50 - 1.6	60	ES5	SPT(S)	N=19 (2,2/4,4,5,6) 11.5ppm		90							CC	oft to firm be oarse. Grav	el is su stone.	ıbangul	sandy CL		l is fine to			(0.60	‡	94.45		
- 1.80 - 1.9 - 1.90 - 2.0		B6 ES7	PID	19.2ppm				0					W	HEAD DEPO Veathered so rown clayey oarse GRAN	andsto sandy	ne reco	gular to s	ubrounde	ed fine to	•	.0	1.80	+	93.85	<u>//</u>	<u>/</u>
-			SPT(S)	N>50 (25 for 60mm/50 for 50mm)		00							C- [H	obbles are : HYTHE FOR	subanç RMATIO	gular to DN]	subround	ded.			0000	(0.90		92.95		
- - 3.08 - 3.2 - 3.25 - 3.3		B8 ES9	PID	<1ppm									G ar	Veathered sa ery sandy sa GRAVEL of sa re 10mm. HYTHE FOF	ubangı andsto	ular to s one with	ubrounde	ed fine to	coarse		0 0 0		† †			‡: •:
-			SPT(S)	N>50 (25 for 30mm/50 for 40mm)	´ 4	10										•					0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	(1.70))			
4.20 - 4.3	80 E	ES10	PID	10.4ppm									W	Veathered s	andsto	ne reco	vered as	very san	dv verv			4.40)	91.25		
4.85 - 5.1	0	B11				90							gr to	ravelly CLA' subangula HYTHE FOF trong light g	Y. Sand r fine to RMATIO	d is fine coarse ONI	to coarse e sandsto	e. Gravel one.	is angula		4 00 2 00 4 00 4 00	(0.45 4.85	´ †	90.80		
- 5.20 - 5.4 - 5.50 - 5.7		B12 ES13	PID	<1ppm		30	10 10 10						Fr	ractures are ertical, smoo	extrement oth, pla	nely clo anar.	sely to c	losely spa	aced,			(0.99))			
-													Sa	Veathered sandy gravellubrounded f	y CLA	Y. Grave	el is suba	ingular to		у		5.84	+ +	39.81		
- - - - 6.80 - 7.1	0	B14				90 75								HYTHE FOR		•						(0.96	†	38.85		
7.10 - 7.2		ES15	PID	<1ppm		\dashv	4						Fr	trong light g ractures are ertical, roug HYTHE FOF	extrei h, plan	nely clo ar.				≣. /		7.10)) ‡	38.55		
-						50							gr	Veathered sa ravelly CLA ubangular to HYTHE FOR	andsto Y with o subro	ne reco low cob ounded	ble conte	nt. Grave	el is			(1.10))			
- - - -													N	lo Recovery	-							8.20	,	37.45		
-																						(2.30))			
- - - -																							† †			
-	11.15	0.75	OLINIO:		1110		TAUC		1		N/A T =	-D 05		D) (ATIONIC			110.	E/0 * 0''	IO D: * * * * * * * * * * * * * * * * * *			<u> </u>	155:	000		$\underline{-}$
Depth Top D			CHNIQL Type		To	H DE Rtn %	TAILS Flu	sh Type	Date/			At Time		RVATIONS sed Rise To	Casing	Sealed	HOL Hole Dia.	E/CASIN Depth	Casing Dia	_		From	TER A	$\overline{}$	lume	(ltr)
0.00	1.20 10.50		Inspectio Rotary C	n Pit 1.80 1	0.50	0		ir mist									150	2.50								

Remarks

Terminated at scheduled depth. Groundwater not encountered.

Termination Depth: 10.50m

Project
Otterpool Phase 2
Client

Folkestone and Hythe District Council

Project No. 10011914 Easting (OS mE) 611559.58

Ground Level (mAOD) 95.65 Northing (OS mN) 135977.57

Start Date **28/08/2018** End Date 29/08/2018 Scale **1:50** Sheet 2 of 2

SAMPL	ES		TESTS		DR	ILL LO	G	_ s	PROGE	RESS				STRATA	A						
Depth	Type/ No.	Type/ No.	Results	T(CR%	FI (min	Flush Rtn%	Water Strikes	Date Time	Casin	1		Desc	ription			Le	gend	Depth (Thickness)	Level	Install/ Backfill
-	110.	110.		R	QD%	max)	144170			Water	No Recove	ry.									///
-																					1//
-									29/08/2018 19:00										10.50	85.15	1///
-									15.00												
L																			_		
-																					
-																					
-																				ļ	
-																					
-																				-	
-																				ļ	
-																					
-																				ļ	
-																					
-																					
ļ.																				1	
ļ																				†	
-																			'	ţ	
ļ.																				†	
-																			-	-	
-																				ļ	
ļ																					
-																				ļ	
-																				<u> </u>	
-																			-	-	
-																				1	
ļ																					
-																				†	
-																					
L																			-	Ļ	
-																					
ļ.																				ļ	
-																				†	
-																				ļ	
-																			_	Ļ	
-																				ļ	
-																				ļ	
-																				ļ	
-																					
L																			-	-	
ļ																					
ļ																					
-																				ļ	
 																				‡	
L																			-	‡	
 																				†	
ļ.																				†	
ļ.																				ţ	
<u> </u>																				1	
<u> </u>																			-	1	
ţ																				†	
DRILL	LING TE	CHNIQL	JE	FLUS	H DE	TAILS			WA	TER OE	 SERVATION	3	Т	HOL	E/CASIN	IG DIAME	TER		L WATER	L R ADDE	D.
Depth Top Depth	h Base	Туре	From	То	Rtn ^c	% Flu:	sh Type	Date/		ke At Tim			Sealed	Hole Dia.	Depth	Casing Dia.			From To		olume (Itr)
0.00 1. 1.20 10	.20).50	Inspection Rotary C	n Pit 1.80 Core	10.50	0	A	ir mist							150	2.50						
				L	L							\perp									
Remarks													•								

Unless otherwise stated: Depth (m), Diameter (mm), Time (hhmm), Thickness (m), Level (mAOD).

Terminated at scheduled depth. Groundwater not encountered.

Equipment Used Pioneer P60D Contractor

Termination Depth: 10.50m Checked By

Logged By IT

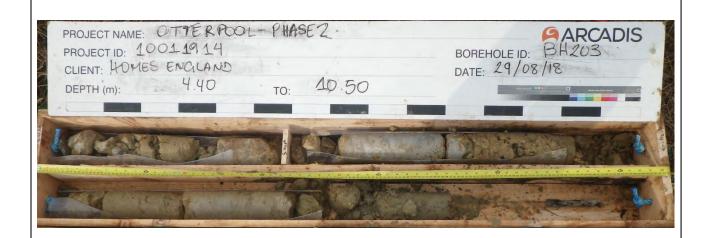
SH

ARCADIS Borehole Photography Sheet

BH203

Otterpool Phase 2

10011914 Easting (OS mE) type


Ground Level (mAOD) type Northing (OS mN) type

Start Date 29/08/2018 End Date 29/08/2018

Folkestone and Hythe District Council

[EXPLORATORY HOLE NUMBER 203: 1.20m-4.00m]

[EXPLORATORY HOLE NUMBER 203: 4.40m-10.50m]

Project
Otterpool Phase 2

Folkestone and Hythe District Council

Project No. 10011914 Easting (OS mE) 611644.34

Ground Level (mAOD) **106.57**Northing (OS mN) **135027.14**

Start Date 03/09/2018 End Date 04/09/2018

Scale 1:50 Sheet 1 of 1

Ontooto	ic uii	u iiyti	ie District Col					<u>`</u>	11644	.34 135027.14	04/09/2018		et 1	<u> </u>
SAMPLE	ES		TESTS		RILL L		- S	PROGF	RESS	STRATA		I		Inoto
Depth	Type/ No.	Type/ No.	Results	SCR% RQD%	FI (min ave max)	Dtn0/	Water Strikes	Date Time	Casing Water	Description	Legend	Depth (Thickness)	Level	Insta Back
0.00 - 0.20	ES1	PID	<1ppm	KQD ⁵	o max)			03/09/2018 17:00		MADE GROUND: Grass over brownis gravelly clayey fine to medium SAND rootlets. Gravel is angular to subroun flint, tarmac and concrete.	with frequent	(0.50)		4 ×
0.50 - 0.70 0.50 - 1.00	ES2 B3	PID	<1ppm							Orangish brown clayey fine to mediur occasional pockets of very sandy silt. [HEAD DEPOSITS]	n SAND with	0.50	- 106.07 - -	
1.20 - 1.40 1.20 - 1.55 1.20 - 2.20	ES4 D5 B6	SPT(S) PID	N=15 (3,3/3,4,4,4) <1ppm	100				03/09/2018 18:00 04/09/2018 08:00		Medium dense multicoloured light gre and reddish brown silty fine to mediur 1-3mm bands of clay. [HEAD DEPOSITS]		1.20	105.37	
2.20 - 2.40 2.20 - 2.65 2.20 - 3.20	ES7 D9 B8	SPT(S) PID	N=14 (2,3/3,4,4,3) <1ppm	100						Pockets of sign	ificant iron staining.	(2.00)		
3.20 - 3.43	D10	SPT(S)	N>50 (1,4/42,8 for 5mm)			0				Strong bluish grey fine grained SANE are closely to widely spaced, subhorize	DSTONE. Fractures	3.20	103.37	
				35 30 30						subvertical, rough, planar. [HYTHE FORMATION]		-	- - -	-
		SPT(C)	N>50 (3,22 for 50mm/50 for 30mm)	45 40 40									-	
				70 60 60										
				80 60 60	20 20 100							(6.80)		٥
				50 35 35									- - - - - - - - - - - - - - - - - - -	
				75 55 55										
						+		04/09/2018 18:00	4.20 8.60			10.00	96.57	۳
		CHNIQL		LUSH [WA	TER OB		E/CASING DIAMETER	WATER		D
pth Top Depth E 0.00 1.20	0	Type Inspectio	n Pit 3.20 1		n % F	lush Type Air mist	Date	e/Time Stril	ke At Time	Elapsed Rise To Casing Sealed Hole Dia. 116	Depth Casing Dia. Depth 10.00 128 2.20	From To) V	olume
1.20 3.20 3.20 10.0	0	Dynamic S Rotary C	ample								113 3.20 121 5.00			
							1	1			116 10.00			

Remarks

Terminated at scheduled depth. Groundwater not encountered.

Termination Depth: 10.00m

ARCADIS Borehole Photography Sheet

BH204

Otterpool Phase 2

Folkestone and Hythe District Council

10011914 Easting (OS mE) 611644.34

Ground Level (mAOD) 106.57 Northing (OS mN) 135027.14

Start Date 03/09/2018 End Date 04/09/2018

[EXPLORATORY HOLE NUMBER 204: 1.20m-6.00m]

[EXPLORATORY HOLE NUMBER 204: 1.20m-6.00m SPLIT]

ARCADIS Borehole Photography Sheet

BH204

Otterpool Phase 2

Folkestone and Hythe District Council

Job No 10011914

Easting (OS mE)

611644.34

106.57 Northing (OS mN) 135027.14

Ground Level (mAOD)

Start Date 03/09/2018 End Date 04/09/2018

[EXPLORATORY HOLE NUMBER 204: 6.00m-10.00m]

Project
Otterpool Phase 2
Client

Folkestone and Hythe District Council

Project No. 10011914 Easting (OS mE) 612340.81

Ground Level (mAOD) **72.06**Northing (OS mN) **137026.93**

Start Date **05/09/2018** End Date **06/09/2018**

Scale 1:50 Sheet 1 of 1

SAMPLI	-s	Ť	TESTS	ח	RILL LO	ng.		PROGE	RESS		STRATA		Т		_	_
Depth	Type/ No.	Type/ No.	Results		FI (min ave	Flush Rtn%	Water Strikes	Date Time	Casing Water		scription			Depth Thickness)	Level	Install Backfi
0.00 - 0.20 0.50 - 0.80	ES8	PID	<1ppm					05/09/2018 14:00		MADE GROUND: Grass o fine to coarse SAND. Grav fine to medium flint, brick, [TOPSOIL]	rel is angular to subang sandstone and concret	jular te.	alc	(0.50)	. 71.56	4.4
-	250	5	T T T T T T T T T T T T T T T T T T T							Soft light brown mottled da slightly gravelly silty CLAY. subrounded fine to coarse [HEAD DEPOSITS]	Gravel is subangular t	ge X		(0.70)		
1.20 - 1.30 1.20 - 1.40	ES1 D10	SPT(S) PID	N=4 (1,1/1,0,1,2) <1ppm							Soft orange brown mottled [HEAD DEPOSITS]	grey silty CLAY.	×-	<u>×</u>	1.20	70.86	
1.70 - 1.80	ES2	PID	<1ppm	100								X- X-	<u>×</u>	(1.00)		
2.20 - 2.30 2.20 - 2.40	ES3 D12	SPT(S) PID	N=14 (2,2/4,3,3,4) <1ppm							Medium dense greenish br	rown mottled orangish	brown 2	×	2.20	- 69.86	
_				100						[HÉAD DÉPOSITS]		100 100		(1.20)		
3.20 - 3.40 3.40 - 3.50	D11 ES4	SPT(S) PID	N=31 (3,5/5,8,9,9) <1ppm							Dense bluish grey slightly	clayey silty fine to coar	se		3.40	68.66	
_				100						SAND. [HEAD DEPOSITS]	Coar	se flint.	× × × × × ×	(1.20)	-	
4.20 - 4.40	D13	SPT(S)	N=44 (6,10/10,11,12,11)									(x x: x: x:	× × × × × ×	(1.20)		
4.60 - 4.70 4.60 - 4.80	ES5 D14	PID	<1ppm	100						Firm dark brown slightly sa coarse. [SANDGATE FORMATION	, ,	s fine to	× × × × × × × × × × × × × × × × × × ×	(0.60)	67.46	
5.20 - 5.30	ES6	SPT(S) PID	N>50 (3,3/8,14,16,12 for 20mm) <1ppm			20		05/09/2018 18:00 06/09/2018 08:00	3.19 4.20	Very stiff dark brown CLAY [SANDGATE FORMATION		X- 		5.20 (0.50)	66.86	
5.70 - 5.80	ES7	PID	<1ppm	80				00.00	4.00	Very stiff dark brown sandy [SANDGATE FORMATION	y CLAY. Sand is fine to I]	coarse.		5.70	66.36	
6.50 - 6.70	D15													(1.00)		
		SPT(C)	N>50 (7,10/11,15,21,3 for 5mm)					06/09/2018 11:00						6.70	65.36	
														-	-	
														<u> </u>	-	
														+		
ייופח	ואום דר	CHNIQU	 E	USH D	ETAIL S			14/4-	TEP OP	SERVATIONS	HOLE/CASING D	ILAMETED	\dashv	WATER	ΔΠΩΓ	<u></u>
		Туре		o Rtn		ush Type	Date/			lapsed Rise To Casing Sealed	 	ing Dia. Depth	n Fro			olume (Itr
epth Top Depth I		.,,,,,,	1 1 -	1	1 ' "	Air mist	05/09/20			0 3.19 4.20	1 1 1	144 4.20				

Remarks

Terminated on designer's instruction.

Termination Depth: 6.70m

Checked By

ARCADIS Borehole Photography Sheet

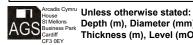
BH206

Otterpool Phase 2

Folkestone and Hythe District Council

10011914 Easting (OS mE) 612340.81

Ground Level (mAOD) 72.06 Northing (OS mN) 137026.93


Start Date 05/09/2018 End Date 06/09/2018

[EXPLORATORY HOLE NUMBER 206: 1.20m-4.20m]

[EXPLORATORY HOLE NUMBER 206: 1.20- 4.00m SPLIT]

ARCADIS Borehole Photography Sheet

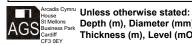
BH206

Otterpool Phase 2

Folkestone and Hythe District Council

10011914 Easting (OS mE) 612340.81

Ground Level (mAOD) 72.06 Northing (OS mN) 137026.93


Start Date 05/09/2018 End Date 06/09/2018

[EXPLORATORY HOLE NUMBER 206: 4.20m-6.70m]

[EXPLORATORY HOLE NUMBER 206: 4.20-6.70m SPLIT]

ARCADIS Rotary Borehole Log

Project
Otterpool Phase 2
Client

Folkestone and Hythe District Council

Project No. 10011914 Easting (OS mE) 611952.04

Ground Level (mAOD) 68.29 Northing (OS mN) 136900.84 Start Date **06/09/2018** End Date **06/09/2018**

Scale 1:50 Sheet 1 of 1

Description Description Liquid Liquid Liq	OIKESTOI	ic uii	u iiyu	ie District Cou						11332	130300.04	00/03/				01 1
Dept. No. Special	SAMPLE	ES		TESTS	DF	RILL LO)G		PROGR	RESS	STRATA					
Company Comp	07 2.		Type/	1				kes kes	11100.		0.1.0.11	•			Level	Install/
Company Comp	Depth			Results	SCR%	ave		Stri Wa	Date Time		Description		Legend	(Thickness)	Level	Backfil
100 100	0.00.000	l			RQD%	max)	Ku170	- 0,	00/00/0040	vvalei			19 5 1 1 1			1 PM
20	0.00 - 0.20	ES1	PID	<1ppm								e brown slightly		-	-	A. 6.
Soft corrupt Street Soft corrupt Street									10.00				312	(0.50)	İ	4
1.00 1.00											[TOF SOIL]		31/2		-	
Part Part			PID	<1ppm							Soft orange brown mottled light brow	n silty sandy CLAY.	X	0.50 -	67.79	
120 - 130 364 587(8) 185(1) 170	0.50 - 1.00	В3										only ourney oz	×]	Į	14 12
120 - 130 364 587(8) 185(1) 170													X	(0.70)	ł	$V \mid V$
120 - 130 364 587(8) 185(1) 170	_												×.	(0.70)	Ĺ	K1 K
1.50 1.40 1.50													X			
1.76 - 1.88			SPT(S)								Soft grey mottled grange brown silty	CL AV	X	1.20	67.09	$ \cdot $
1.70 - 1.80 555 PID Cipiem 100			PID	<1ppm								OLAI.	<u></u>	1	İ	ŀ •⊢ •
2.00 - 1.0 556 PO	1.20 - 1.05	011									[×_^_	-	ŀ	ŀ∴ H :
Soft gray motified light frown motified orange brown 200	4.70 4.00	E05	DID		100								$-\frac{\times}{\times}$	(0.80)	t	ľ∵H∴
Soft gray motified light frown motified orange brown 200	1.70 - 1.80	E55	PID	<1ppm									×]	Į.	
2.20 2.20 EST SPTIG) N=151,11.34.4.4) 2.20 2.20 2.00 DEST SPTIGS N=151,11.34.4.4) 2.20 2.00 DEST SPTIGS N=151,11.34.4.4) 2.20 2.00 DEST SPTIGS N=151,11.34.4.4) 2.20 2.00 DEST SPTIGS N=151,11.34.4.4) 2.20 2.00 DEST SPTIGS N=151,11.34.4.4) 2.20 2.00 DEST SPTIGS N=151,11.34.4.4) 2.20 2.00 DEST SPTIGS N=151,11.34.4.4) 2.20 2.00 DEST SPTIGS N=151,11.34.4.4) 2.20 2.00 DEST SPTIGS N=151,11.34.4.4.4) 2.20 2.00 DEST SPTIGS N=151,11.34.4.4.4 2.20 2.00 DEST SPTIGS N=151,11.34.4.4.4 2.20 2.00 DEST SPTIGS N=151,11.34.4.4.4 2.20 2.00 DEST SPTIGS N=151,11.34.4.4.4 2.20 2.00 DEST SPTIGS N=151,11.34.4.4.4 2.20 2.00 DEST SPTIGS N=151,11.34.4.4.4 2.20 2.00 DEST SPTIGS N=151,11.34.4.4.4 2.20 2.00 DEST SPTIGS N=151,11.34.4.4.4 2.20 2.00 DEST SPTIGS N=151,11.34.4.4.4 2.20 2.00 DEST SPTIGS N=151,11.34.4.4.4 2.20 2.00 DEST SPTIGS N=151,11.34.4.4.4 2.20 2.00 DEST SPTIGS N=151,11.34.4.4.4 2.20 2.00 DEST SPTIGS N=151,11.34.4.4.4 2.20 2.00 DEST SPTIGS N=151,11.34.4.4.4 2.20 2.00 DEST SPTIGS N=151,11.34.4.4.4 2.20 2.00 DEST SPTIGS N=151,11.34.4.4.4 2.00 DEST SPTIGS N=151,11.34.4.4.4 2.00 DEST SPTIGS N=151,11.34.4.4.4 2.00 DEST SPTIGS N=151,11.34.4.4.4 2.00 DEST SPTIGS N=151,11.34.4.4.4 2.00 DEST SPTIGS N=151,11.34.4.4.4 2.00 DEST SPTIGS N=151,11.34.4.4.4 2.00 DEST SPTIGS N=151,11.34.4.4.4 2.00 DEST SPTIGS N=151,11.34.4.4 2.00 D													$\overline{\times}$		·	l.÷□:ˈ
2.93 - 2.40	-2.00 - 2.10	ES6									Soft grev mottled light brown mottled	orange brown	×		66.29	
Thirt	2.20 - 2.30	ES7	SPT(S)	N=15 (1,1/3,4,4,4)										2.20	66.09	
2.20			PID	<1ppm							cobbles. Gravel is angular to subang	ular fine to coarse	1	(0.32)	ł	ŀ.`H.∙
Spring	2.20 - 2.65	D12											/ 		65 77	ŀ*. ⊢ †
Soft brown motified light known sanety gravelly CLAY Covere is abbrighted for subclumed fine for subclumed fine for subclumed fine subclu	2.60 - 2.70	ES8	PID	<1ppm	100									2.52	03.77	ľ:H:
Section Sect				1	.55								/E		İ	
203 14.0		1		1								tine flint.			I	l.∶□:˚
3.30 - 3.63	_										Medium dense deris have a list "	the aliabethe arrange		(0.88)	F	ŀ:∐:
3.30	3 20 - 2 65	D12	SDT/S)	N=25 (2 2/4 5 6 40)									+: $-$:		İ	ŀ:H:
SPTIC N=50 (10.5 for domm)	3.20 - 3.00			1 '								o subiounded line				.*H.*
DRILLING TECHNIQUE			PID	<1ppm									/	3.40	64.89	
A 00 - 4 36	•				100						Medium dense dark brown mottled d	ark blue gravelly] 1	Ī	[::H:
## A00 - 4.36 D14 SPT(S) N-SQ (16.9 for Object 1971 (3.12.8 for Object 1971 (3				1							silty very sandy CLAY. Sand is fine to	coarse. Gravel is		(0.60)	-	
No. No.															İ	ЫHĚ
No. Recovery Westhered sandstone recovered as dark greenish brown signify clargy gravely SAND. Sand is fine to coarse. 4.00 63.99 63	-4.00 - 4.36	D14	SPT(S)	N>50 (16.9 for			20				[HEAD DEPOSITS]			4.00	64.29	l H.
Bo			. ,	10mm/17,13,12,8 for							No Recovery.			I .	1	ŀ∴ H :
SPT(C) N=50 (10.15 for 20mm50 for 40mm) SPT(C) N=50 (10.15 for 20mm50 for 40mm50				40mm)										1	63.00	ľ°H∴
SPT(C) N>50 (10.15 for 20mm/50 for 40mm) SPT(C) N>50 (10.15 for 20mm/50 for 40mm/50 f					80										05.55	
DRILLING TECHNIQUE	-				00										62.60	l.÷□:ˈ
PTIC N=50 (10,15 for 20mm/50 for 40mm)												fine to coarse		4.00	03.09	Ŀ:Ш:
SPTIC N-50 (10,15 for 40mm) N-50 (10,15 for 40mm) SPTIC N-50 (10,15 for 40mm) SPTIC N-50 (10,15 for 40mm) SPTIC N-50 (10,15 for 40mm) SPTIC N-50 (10,15 for 40mm) SPTIC N-50 (10,15 for 40mm) SPTIC N-50 (10,15 for 40mm) SPTIC N-50 (10,15 for 40mm) SPTIC N-50 (10,15 for 40mm) SPTIC N-50 (10,15 for 40mm) SPTIC N-50 (10,15 for 40mm) SPTIC N-50 (10,15 for 40mm) SPTIC N-50 (10,15 for 40mm) SPTIC N-50 (10,15 for 40mm) SPTIC N-50 (10,15 for 40mm) SPTIC N-50 (10,15 for 40mm) N-50 (10,1													/	(0.40)	1	ŀ∴H÷
DRILLING TECHNIQUE	_		SPT(C)	N>50 (10 15 for					06/09/2018	4 00		NDSTONE		5.00	63 20	<u>'.°</u> ⊢.∙
DRILLING TECHNIQUE FLUSH DETAILS WATER OBSERVATIONS HOLE/CASING DIAMETER WATERADDED Diament Simple Type From 15 Rth % Flush Type Observation State At Print Repair Rule To Casing Sealed Hole Dia Depth Casing Dia Depth From To Volume Casing Diament Simple Roles Pick At mast 0606/2016 14-40 0 5.00 1.00 Diament Simple Roles Pick At mast 0606/2016 14-40 0 2.00 Diament Simple Roles Pick At mast 0606/2016 14-40 0 2.00 Diament Simple Roles Pick At mast 0606/2016 14-40 0 2.00 Diament Simple Roles Pick At mast 0606/2016 14-40 0 2.00 Diament Simple Roles Pick At mast 0606/2016 14-40 0 2.00 Diament Simple Roles Pick At mast 0606/2016 14-40 0 2.00 Diament Simple Roles Pick At mast 0606			01 1(0)	20mm/50 for 40mm)					18:00			ANDOTONE.	Λ	0.00	00.20	
DRILLING TECHNIQUE											(1				İ	
Depth Top Depth Base Type From To Rtn % Flush Type Date/Time Strike At Time Elapsed Rise To Casing Sealed Hole Dia. Depth Casing Dia. Depth From To Volume 0.00 1.20 Inspection Pit Dynamic Sample Rotary Core 4.00 5.00 20 Air mist 06/09/2018 14:40 2.20 20 1.63 0.00 4.00 116 5.00 144 4.00 4.00 4.00 116 5.00 144 4.00 4.00 4.00 4.00 116 5.00 144 4.00									08:00	3.78] .	Į	
Depth Top Depth Base Type From To Rtn % Flush Type Date/Time Strike At Time Elapsed Rise To Casing Sealed Hole Dia. Depth Casing Dia. Depth From To Volume 0.00 1.20 1.20 Inspection Pit 4.00 5.00 20 Air mist 06/09/2018 14:40 2.20 20 1.63 0.00 4.00 116 5.00 144 4.00 4.00 4.00 116 5.00 144 4.00 4.00 4.00 4.00 116 5.00 144 4.00	-													-	ŀ	
Depth Top Depth Top Perh Top From To Rtn % Flush Type Date/Time Strike At Time Elapsed Rise To Casing Sealed Hole Dia. Depth Casing Dia. Depth From To Volume 0.00 1.20 Inspection Pit Dynamic Sample Rotary Core 4.00 5.00 20 Air mist 06/09/2018 14:40 2.20 20 1.63 0.00 4.00 116 5.00 144 4.00 4.00 4.00 4.00 4.00 4.00 4.00 116 5.00 144 4.00]]	İ	
Depth Top Depth Base Type From To Rtn % Flush Type Date/Time Strike At Time Elapsed Rise To Casing Sealed Hole Dia. Depth Casing Dia. Depth From To Volume 0.00 1.20 Inspection Pit Dynamic Sample Rotary Core 4.00 5.00 20 Air mist 06/09/2018 14:40 2.20 20 1.63 0.00 4.00 116 5.00 144 4.00															-	
Jepth Top Depth Base Type From To Rtn % Flush Type Date/Time Strike At Time Elapsed Rise To Casing Sealed Hole Dia. Depth Casing Dia. Depth From To Volume 0.00 1.20 Inspection Pit Dynamic Sample Rotary Core 4.00 5.00 20 Air mist 06/09/2018 14:40 2.20 20 1.63 0.00 4.00 116 5.00 144 4.00	_]	Ĺ	
Lepth Top Depth Base Type From To Rtn % Flush Type Date/Time Strike At Time Elapsed Rise To Casing Sealed Hole Dia. Depth Casing Dia. Depth From To Volume 0.00 1.20 Inspection Pit Dynamic Sample 4.00 5.00 20 Air mist 06/09/2018 14:40 2.20 20 1.63 0.00 4.00 116 5.00 144 4.00 4.00 4.00 4.00 116 5.00 144 4.00 4.	-]	Γ	
Jepth Top Depth Base Type From To Rtn % Flush Type Date/Time Strike At Time Elapsed Rise To Casing Sealed Hole Dia. Depth Casing Dia. Depth From To Volume 0.00 1.20 Inspection Pit Dynamic Sample Rotary Core 4.00 5.00 20 Air mist 06/09/2018 14:40 2.20 20 1.63 0.00 4.00 116 5.00 144 4.00														-	1	
Jepth Top Depth Base Type From To Rtn % Flush Type Date/Time Strike At Time Elapsed Rise To Casing Sealed Hole Dia. Depth Casing Dia. Depth From To Volume 0.00 1.20 Inspection Pit Dynamic Sample Rotary Core 4.00 5.00 20 Air mist 06/09/2018 14:40 2.20 20 1.63 0.00 4.00 116 5.00 144 4.00] [İ	
Jepth Top Depth Base Type From To Rtn % Flush Type Date/Time Strike At Time Elapsed Rise To Casing Sealed Hole Dia. Depth Casing Dia. Depth From To Volume 0.00 1.20 Inspection Pit Dynamic Sample Rotary Core 4.00 5.00 20 Air mist 06/09/2018 14:40 2.20 20 1.63 0.00 4.00 116 5.00 144 4.00														-	-	
Jepth Top Depth Base Type From To Rtn % Flush Type Date/Time Strike At Time Elapsed Rise To Casing Sealed Hole Dia. Depth Casing Dia. Depth From To Volume 0.00 1.20 Inspection Pit Dynamic Sample Rotary Core 4.00 5.00 20 Air mist 06/09/2018 14:40 2.20 20 1.63 0.00 4.00 116 5.00 144 4.00														l •	1	
Jepth Top Depth Base Type From To Rtn % Flush Type Date/Time Strike At Time Elapsed Rise To Casing Sealed Hole Dia. Depth Casing Dia. Depth From To Volume 0.00 1.20 Inspection Pit Dynamic Sample Rotary Core 4.00 5.00 20 Air mist 06/09/2018 14:40 2.20 20 1.63 0.00 4.00 116 5.00 144 4.00]	İ	
Jepth Top Depth Base Type From To Rtn % Flush Type Date/Time Strike At Time Elapsed Rise To Casing Sealed Hole Dia. Depth Casing Dia. Depth From To Volume 0.00 1.20 Inspection Pit Dynamic Sample Rotary Core 4.00 5.00 20 Air mist 06/09/2018 14:40 2.20 20 1.63 0.00 4.00 116 5.00 144 4.00															-	
Jepth Top Depth Base Type From To Rtn % Flush Type Date/Time Strike At Time Elapsed Rise To Casing Sealed Hole Dia. Depth Casing Dia. Depth From To Volume 0.00 1.20 Inspection Pit Dynamic Sample Rotary Core 4.00 5.00 20 Air mist 06/09/2018 14:40 2.20 20 1.63 0.00 4.00 116 5.00 144 4.00	_														r	
Lepth Top Depth Base Type From To Rtn % Flush Type Date/Time Strike At Time Elapsed Rise To Casing Sealed Hole Dia. Depth Casing Dia. Depth From To Volume 0.00 1.20 Inspection Pit Dynamic Sample 4.00 5.00 20 Air mist 06/09/2018 14:40 2.20 20 1.63 0.00 4.00 116 5.00 144 4.00 4.00 4.00 4.00 116 5.00 144 4.00 4.																
epth Top Depth Base Type From To Rtn % Flush Type Date/Time Strike At Time Elapsed Rise To Casing Sealed Hole Dia. Depth Casing Dia. Depth From To Volume To Volume Volume To Volu														-	-	
Lepth Top Depth Base Type From To Rtn % Flush Type Date/Time Strike At Time Elapsed Rise To Casing Sealed Hole Dia. Depth Casing Dia. Depth From To Volume 0.00 1.20 Inspection Pit Dynamic Sample 4.00 5.00 20 Air mist 06/09/2018 14:40 2.20 20 1.63 0.00 4.00 116 5.00 144 4.00 4.00 4.00 4.00 116 5.00 144 4.00 4.]	Ĺ	
Lepth Top Depth Base Type From To Rtn % Flush Type Date/Time Strike At Time Elapsed Rise To Casing Sealed Hole Dia. Depth Casing Dia. Depth From To Volume 0.00 1.20 Inspection Pit Dynamic Sample 4.00 5.00 20 Air mist 06/09/2018 14:40 2.20 20 1.63 0.00 4.00 116 5.00 144 4.00 4.00 4.00 4.00 116 5.00 144 4.00 4.]		
epth Top Depth Base Type From To Rtn % Flush Type Date/Time Strike At Time Elapsed Rise To Casing Sealed Hole Dia. Depth Casing Dia. Depth From To Volume To Volume Volume To Volu															+	
epth Top Depth Base Type From To Rtn % Flush Type Date/Time Strike At Time Elapsed Rise To Casing Sealed Hole Dia. Depth Casing Dia. Depth From To Volume To Volume Volume To Volu															İ	
epth Top Depth Base Type From To Rtn % Flush Type Date/Time Strike At Time Elapsed Rise To Casing Sealed Hole Dia. Depth Casing Dia. Depth From To Volume To Volume Volume To Volu	-													-	L	
epth Top Depth Base Type From To Rtn % Flush Type Date/Time Strike At Time Elapsed Rise To Casing Sealed Hole Dia. Depth Casing Dia. Depth From To Volume To Volume Volume To Volu															-	
epth Top Depth Base Type From To Rtn % Flush Type Date/Time Strike At Time Elapsed Rise To Casing Sealed Hole Dia. Depth Casing Dia. Depth From To Volume To Volume Volume To Volu															t	
epth Top Depth Base Type From To Rtn % Flush Type Date/Time Strike At Time Elapsed Rise To Casing Sealed Hole Dia. Depth Casing Dia. Depth From To Volume To Volume Volume To Volu															Į.	
epth Top Depth Base Type From To Rtn % Flush Type Date/Time Strike At Time Elapsed Rise To Casing Sealed Hole Dia. Depth Casing Dia. Depth From To Volume To Volume Volume To Volu														-	+	
epth Top Depth Base Type From To Rtn % Flush Type Date/Time Strike At Time Elapsed Rise To Casing Sealed Hole Dia. Depth Casing Dia. Depth From To Volume To Volume Volume To Volu															t	
epth Top Depth Base Type From To Rtn % Flush Type Date/Time Strike At Time Elapsed Rise To Casing Sealed Hole Dia. Depth Casing Dia. Depth From To Volume To Volume Volume To Volu														:		
epth Top Depth Base Type From To Rtn % Flush Type Date/Time Strike At Time Elapsed Rise To Casing Sealed Hole Dia. Depth Casing Dia. Depth From To Volume To Volume Volume To Volu															-	
Lepth Top Depth Base Type From To Rtn % Flush Type Date/Time Strike At Time Elapsed Rise To Casing Sealed Hole Dia. Depth Casing Dia. Depth From To Volume 0.00 1.20 Inspection Pit Dynamic Sample 4.00 5.00 20 Air mist 06/09/2018 14:40 2.20 20 1.63 0.00 4.00 116 5.00 144 4.00 4.00 4.00 4.00 116 5.00 144 4.00 4.	-			1										-	t	
epth Top Depth Base Type From To Rtn % Flush Type Date/Time Strike At Time Elapsed Rise To Casing Sealed Hole Dia. Depth Casing Dia. Depth From To Volume To Volume Volume To Volu				1										:	I	
Lepth Top Depth Base Type From To Rtn % Flush Type Date/Time Strike At Time Elapsed Rise To Casing Sealed Hole Dia. Depth Casing Dia. Depth From To Volume 0.00 1.20 Inspection Pit Dynamic Sample 4.00 5.00 20 Air mist 06/09/2018 14:40 2.20 20 1.63 0.00 4.00 116 5.00 144 4.00 4.00 4.00 4.00 116 5.00 144 4.00 4.				1											-	
Lepth Top Depth Base Type From To Rtn % Flush Type Date/Time Strike At Time Elapsed Rise To Casing Sealed Hole Dia. Depth Casing Dia. Depth From To Volume 0.00 1.20 Inspection Pit Dynamic Sample 4.00 5.00 20 Air mist 06/09/2018 14:40 2.20 20 1.63 0.00 4.00 116 5.00 144 4.00 4.00 4.00 4.00 116 5.00 144 4.00 4.				1										1	İ	
epth Top Depth Base Type From To Rtn % Flush Type Date/Time Strike At Time Elapsed Rise To Casing Sealed Hole Dia. Depth Casing Dia. Depth From To Volume To Volume Volume To Volu				1]		
epth Top Depth Base Type From To Rtn % Flush Type Date/Time Strike At Time Elapsed Rise To Casing Sealed Hole Dia. Depth Casing Dia. Depth From To Volume To Volume Volume To Volu															1	
epth Top Depth Base Type From To Rtn % Flush Type Date/Time Strike At Time Elapsed Rise To Casing Sealed Hole Dia. Depth Casing Dia. Depth From To Volume To Volume Volume To Volu														1	1	
epth Top Depth Base Type From To Rtn % Flush Type Date/Time Strike At Time Elapsed Rise To Casing Sealed Hole Dia. Depth Casing Dia. Depth From To Volume To Volume Volume To Volu				1										-	-	
epith Top Depth Base Type From To Rtn % Flush Type Date/Time Strike At Time Elapsed Rise To Casing Sealed Hole Dia. Depth Casing Dia Depth From To Volume To Volume Volume To Casing Sealed Hole Dia Depth Casing Dia Depth From To Volume To Volu								<u> </u>								
0.00 1.20 4.00 1.20 4.00 Inspection Pit 4.00 4.00 5.00 5.00 20 Air mist 6/09/2018 14:40 2.20 20 20 1.63 2.20 0.00 2.20 4.00 4.00 116 4.00 5.00 4.00 116 4.00 5.00 4.00 116 4.00 5.00 4.00 116 4.00 116 4.00 5.00 4.00 116 4.00	DRILLI	NG TE	CHNIQL	JE FL	USH DE	TAILS			WAT	ER OBS	ERVATIONS HOLI	E/CASING DIAMETE	R	WATER	ADDE	D
1.20 4.00 Dynamic Sample 4.00 5.00 Rotary Core	epth Top Depth 8	Base	Туре	From T	o Rtn	% Flu	ish Type			ce At Time I	lapsed Rise To Casing Sealed Hole Dia.	Depth Casing Dia.	Depth	From To	y Vo	olume (Itr)
4.00 5.00 Rotary Core			Inspectio	n Pit 4.00 5.0	00 20	A	vir mist	06/09/20	18 14:40 2.3	20 2	0 1.63 0.00 4.00 116	5.00 144	4.00			
Remarks			, -					1								
	2amarke								-			-				

Remarks

Terminated on designer's instruction.

Termination Depth: 5.00m

ARCADIS Borehole Photography Sheet

BH207

Otterpool Phase 2

Folkestone and Hythe District Council

10011914 Easting (OS mE) 611952.04

Ground Level (mAOD) 68.29 Northing (OS mN) 136900.84

Start Date 06/09/2018 End Date 06/09/2018

[EXPLORATORY HOLE NUMBER 207: 1.20m-4.00m]

[EXPLORATORY HOLE NUMBER 207: 1.20- 4.00m SPLIT]

ARCADIS Rotary Borehole Log

Project
Otterpool Phase 2
Client

Folkestone and Hythe District Council

Project No. 10011914 Easting (OS mE) 611187.45

Ground Level (mAOD) **65.56**Northing (OS mN) **137527.62**

Start Date 15/08/2018 End Date 17/08/2018 Scale 1:50 Sheet 1 of 1

SAMPLE	ES		TESTS	DF	RILL LC)G	_ s	PROGR	ESS	STRATA	
Depth	Type/ No.	Type/ No.	Results	TCR% SCR% RQD%	FI (min ave max)	Flush Rtn%	Water Strikes	Date Time	Casing Water		nstall/ ackfill
_ 0.00 - 0.10	ES1	PID	<1ppm		Í			16/08/2018 09:00		Grass over brownish grey slightly clayey fine to medium SAND with rare charcoal.	ع ا
- 0.40 - 0.60	B2	PID	<1ppm							[TOPSOIL]) Þ.
- 0.40 - 0.60 - 0.40 - 0.60	D3 ES4		Т							Soft orangish brown slightly sandy silty CLAY with occasional rootlets (1mm) and black staining. Sand is	
- 0.40 - 0.00	204									fine to medium. [HEAD DEPOSITS]	1/
- -1.00 - 1.20	ES5	PID	<1ppm							[HEAD DEPOSITS]	16
- 1.20 - 1.65	U6									(1.60)	1/2
1.20 - 1.65	UT6										1/2
- 1.70 - 1.90	ES7	PID	<1ppm	89							16
- 1.70 - 1.50	207		Т								11/
-2.00 - 2.10 - 2.00 - 2.10	D8 ES9	SPT(S) PID	N=8 (1,1/2,2,2,2) <1ppm							Firm orangish brown mottled grey sandy CLAY with	
2.00 - 2.45 2.00 - 2.50	D26 B10									occasional charcoal. Rare subangular coarse gravel of flint. Sand is fine to coarse.	
2.50 - 2.60	D12	PID	<1ppm	100						[HEAD DEPOSITS] (0.90)	
2.50 - 2.60	ES11										\mathbb{H}^{\cdot}
2.90 - 3.00	D14	PID	<1ppm							Firm laminated light grey and orangish brown sandy	\mathbb{H} :
-2.90 - 3.00 - 2.90 - 3.80 - 3.00 - 3.45	ES13 B15	SF 1(S)	N=10 (1,1/2,2,3,3)							tending to very sandy CLAY.	H:
3.00 - 3.45	D27			100						10mm pockets of soft very light brown and orangish (0.90)	
-				100						brown clay.	1:
- 3.80 - 4.00	ES16	PID	<1ppm							Medium dense dark greenish grey slightly silty fine to 3.80 61.76	\exists
-4.00 - 4.45 - 4.00 - 5.00	D28	SPT(S)	N=29 (4,4/6,7,7,9)							medium glauconitic SAND.	\mathbb{H}^{\cdot}
4.00 - 5.00	B18	PID	<1ppm							[HEAD DEPOSITS] Becoming more silty.	-
- - 4.50 - 4.60	ES17	PID	<1ppm	100						(1.20)	
-											
-											Н.
-5.00 - 5.10 - 5.00 - 5.10		SPT(S) PID	N>50 (5,13/12,12,15,11 for			0				Very dense multicoloured red brown, orangish brown, dark grey slightly silty clayey fine to coarse SAND.	\mathbb{H}
5.00 - 5.45 5.00 - 5.50	D29 B21		45mm) <1ppm							[SANDGATE FORMATION] (0.50)	Η.
- 5.50 - 5.70 - 5.50 - 5.70	D23 ES22	PID	<1ppm	100						Iron stone and staining. 5.50 60.06 Very dense dark grey fine SAND.	\mathbb{H} :
5.50 - 5.90	B24									[SANDGATE FORMATION] (0.40)	
- 5.90 - 6.00 -	ES25	PID	<1ppm					16/08/2018	6.00	Very dense dark grey slightly silty fine SAND. 5.90 6.00 59.66 5.95	<u> H:</u>
-								16:00 17/08/2018	4.80 6.00	\[SANDGATE FORMATION]	
								09:00	4.80		
-											
-											
-											
-											
_											
-											
-											
-											
-											
[-											
-											
-											
-											
-											
-											
		CHNIQL	<u> </u>	USH DI			B			SERVATIONS HOLE/CASING DIAMETER WATER ADDED	no // `
0.00 1.20)	Type	n Pit 5.00 6.0			ish Type ir mist	Date/	rime Strik	e At Time I		ne (Itr)
1.20 6.00		Dynamic S	ample								
Remarks											

Terminated due to Health and Safety concerns. Groundwater not encountered.

Termination Depth: 6.00m

ARCADIS Borehole Photography Sheet

BH208

Otterpool Phase 2

Folkestone and Hythe District Council

10011914 Easting (OS mE) 611187.45

Ground Level (mAOD) 65.56 Northing (OS mN) 137527.62

Start Date 15/08/2018 End Date 17/08/2018

[EXPLORATORY HOLE NUMBER 208: 1.20m-4.00m]

[EXPLORATORY HOLE NUMBER 208: 1.20-4.00m SPLIT]

ARCADIS Borehole Photography Sheet

BH208

Otterpool Phase 2

Folkestone and Hythe District Council

10011914 Easting (OS mE) 611187.45

Ground Level (mAOD) 65.56 Northing (OS mN) 137527.62

Start Date 15/08/2018 End Date 17/08/2018

[EXPLORATORY HOLE NUMBER 208: 4.00m-6.00m]

[EXPLORATORY HOLE NUMBER 208: 4.00-6.00m SPLIT]

ARCADIS Rotary Borehole Log

Project
Otterpool Phase 2
Client

Folkestone and Hythe District Council

Project No. 10011914 Easting (OS mE) 610176.70

Ground Level (mAOD) **57.88**Northing (OS mN) **137633.24**

Start Date **24/08/2018** End Date **27/08/2018**

Scale 1:50 Sheet 1 of 2

SAM	IPLES			TESTS			DR	ILL LO	ıG	_ 0	PROG	RESS	T					STRAT	A						T	
Depth	Тур		ype/ No.	Res	sults	SC	CR%	FI (min ave max)	Flush Rtn%	Water Strikes	Date Time	Casi Wat					Des	cription				Legend	Depth (Thickness	Level		stall/ ckfill
0.00 - 0.2	20 ES	S1 PI	D	<1ppm							23/08/2018 08:00					layey fi	ine to n	nedium S	AND.			ale	(0.30)	-	4	i.s
0.30 - 0.			D	<1ppm							00.00			Soft to		rev mot	ttled or	ange bro	wn sliahtl	lv grave	llv	alc.	0.30	57.5	نمٰ₃	
- 0.30 - 0.5 - 0.30 - 0.5													;	sandy	CLAY	with oc	casion	al black s	tainings.	Gravel				‡	d	
-														suban [ALLU		ne to co	oarse s	andstone	e, ironsto	ne.				1		
- 0.90 - 1.0			D	<1ppm									- '	į, keeo	violij								(1.15)	‡		
-0.90 - 1.0 1.10 - 1.2	20 B	7 PII		<1ppm															Slow wat	er seepa	age.		1	†		
1.10 - 1.1			PT(S)	N=3 (1,0/1	1,1,1,0)																		1	†		$\exists :$
-	. -												Η,	Very Id	ose lig	ht brov	vn mot	tled dark	brown cla	ayey ve	ry	×	1.45	56.4	3	$\exists : \exists$
1.70 - 2.0	00 ES		D	<1ppm		1	00							silty fir	ne to co	arse S	SAND.					<u>></u>		‡		
1.80 - 2.0	00 D	11											'	[ALLO	VIOIVIJ									1		
F		0.5	T(0)																Poo	cket of p	eat.] ×—, -	(1.15)	Ť		-
F				N=4 (1,0/1	,1,1,1)																	×	-	†		$\exists : 1$
- 2.40 - 2.5	55 ES	12 PII	D	<1ppm																		× ×		‡		
2.70 - 3.0	00 D	13				1	00								own to			ilty very s	sandy org	ganic CL	_AY.	×	2.60	55.2	1	\exists
-						'	00							[ALLU		o coars	se.					316 <u>×</u>	,	1		$\exists \cdot \mid$
-3.00 - 3. ⁻	io ES	14 PII	ט	<1ppm																		316 ×	(1.16)	Ŧ]
E																							(1.10)	I		\exists
E		SF	PT(S)	N=10 (1,2/	/2,2,3,3)	\vdash	-															210 ×		Ŧ		$\dashv \dashv$
3.76 - 4.0		15 PII	_D	<1ppm									L	F: -		E-17		M		L4L "			3.76	54.1	2	$\exists \exists$
3.76 - 4.0	00 ES	16				1	00				23/08/2018		.00					ttled blue spaced o			y	×	-	1		
E											18:00 24/08/2018						vertica RMATIC					<u>×_×</u>	(0.74)	1		$\dashv \cdot \mid$
E											08:00	3	.00	[vv⊏∧ı		NI FUN	(IVIATIC	ואון				<u>×_×</u>		1		7
E		SF	PT(S)	N=19 (2,2/	/4,4,5,6)	-							Н	Firm to	stiff st	tructure	eless bl	ue grey s	silty CLA	<u>/.</u>		XX	4.50	53.3	3	
- 4.80 - 4.9	90 FS	17 PII	n	<1ppm													RMATIC		,			×_×	1	1		\exists
-5.00 - 5.2				тррш		1	00															×	1	1		\dashv
- 0.00																						1×— -	-	†]]
-																						<u>×_×</u>	-	1		
-		SF	PT(S)	N=23 (4,4/	/5,5,6,7)																	×_×_		†		\dashv
- - 5.80 - 5.9	90 ES	19 PII	D	<1ppm																		<u>×</u> ×		†		\exists
-6.00 - 6.9		20				1	00															X		1		
-																						L ×	1	†		\exists
ļ.																						×	1	‡		-
F		SF	PT(S)	N=22 (4,4/	/5,5,6,6)																	×	1	†		$\exists :]$
6.80 - 6.9	90 ES	21 PI	D	<1ppm																		×	-	†		
F						1	00															<u>×_×</u>		+		$\exists : \exists$
F																						<u>×_×</u>	(0.00)	1		$\exists : \exists$
7.40 - 7.	50 D2	22	JT/C/	N=07 /5 5	IC C 7 C'																	XX	(6.00)	-]
E		51	1(0)	N=27 (5,5/	, ν, σ, ν)																	× ×		Ŧ		$\exists \exists$
7.80 - 7.9	90 ES	23 PI	D	<1ppm																		×	1	1		\exists
F						1	00															×		+		74
ŀ																						<u>×</u> _ <u>×</u>	-	†		ココ
8.40 - 8.5	50 D2		PT(S)	N=30 (5,6/	/7 7 7 0\											2cm	flint su	rrounded	by orange	e brown	silt.	<u> </u>	-	1		\exists
ŀ		31	.,5)		,.,,,,)																	\ <u>×</u>		1		$+\cdot$
8.80 - 8.9	90 ES	25 PII	D	<1ppm			00															<u>×</u> ×		†		$\exists \exists$
F						1	00															×		†		
-																						×	1	‡		\exists
9.40 - 9.	50 D2	26 SF	PT(S)	N=31 (7,7/	/7,7,8,9)																	×		‡		4.1
-					. ,		00															×— -	-	†]
9.80 - 9.9	90 ES	27 PII	D	<1ppm		'	50															×		‡		\exists
F													-									×		Ť		34.41
	ILLING	TECH				FLUS								ERVAT					E/CASIN					RADDI		
Depth Top D	epth Base	Įn:	Type		From 3.76	To 10.50	Rtn 9		sh Type ir mist	Date	Time Str	ike At 1	Time Ela	apsed R	tise To	Casing	Sealed	Hole Dia.	Depth 10.50	Casing D		Depth 2.00	From	To \	/olume	e (Itr)
1.10	10.50		namic Sa																. 5.00	113		7.00				
										1		1		- 1						1						

Remarks

Terminated at scheduled depth. Groundwater not encountered.

Termination Depth: 10.50m

ARCADIS Rotary Borehole Log

Project
Otterpool Phase 2
Client

Folkestone and Hythe District Council

Project No. 10011914 Easting (OS mE) 610176.70

Ground Level (mAOD) 57.88 Northing (OS mN) 137633.24

Start Date **24/08/2018** End Date **27/08/2018**

Scale **1:50** Sheet 2 of 2

SAMPLE	S		TESTS	D	RILL LC	OG	<u>-</u> ω	PROGR	ESS			STRATA							l
Depth	Type/ No.	Type/ No.	Results	TCR% SCR%	FI (min ave max)	Flush Rtn%	Water Strikes	Date Time	Casing Water		Des	cription			Lege	nd (Ti	Depth nickness)	Level	Instal Backf
				וועט%	max)					Firm to stiff st [WEALD CLA	ructureless bl	ue grey sil	ty CLAY.		<u>×</u> _	1			
10.40 - 10.50	D28	CDT/C)	N=36 (8,9/8,8,9,11)					24/08/2018	7.00	[WEALD CLA	Y FORMATIO	INI			×	<u>×</u>	10.50	47.38	
		SP1(S)	N=36 (8,9/8,8,9,11)		1			18:00	7.00 8.00								10.50	47.38	
																	-	-	
																	-	-	
																	-		
																	_	-	
																	-	-	
																	-		
																	-		
																	_	-	
																	-	-	
																		-	
•																	-		
																	-		
.																	-	<u> </u> -	
																		1	
-																	-	-	
DRILLII Depth Top Depth B		CHNIQL Type		USH D		ısh Type	Date/		ER OBS	SERVATIONS Flapsed Rise To	Casing Sealed	HOLE Hole Dia.		G DIAME Casing Dia.		Fron	WATER		D olume (It
0.00 1.10 1.10 10.5)	Inspection Dynamic S		0.50		Air mist	Date/	c off		INISE IO	Janny Jealed	113	10.50	113 113	2.00 7.00	1 1011	. 10	, v	orunne (II
	ין ט	Dynamic S	ample				1	1				1		113	1.00				

Terminated at scheduled depth. Groundwater not encountered.

Termination Depth: 10.50m

ARCADIS Borehole Photography Sheet

BH209

Otterpool Phase 2

Folkestone and Hythe District Council

10011914 Easting (OS mE) 610176.70

57.88 Northing (OS mN) 137633.24

Ground Level (mAOD)

Start Date 24/08/2018 End Date 24/08/2018

[EXPLORATORY HOLE NUMBER 209: 1.20m-4.50m]

[EXPLORATORY HOLE NUMBER 209: 4.50m-7.50m]

[EXPLORATORY HOLE NUMBER 209: 7.50m-10.50m]

ARCADIS Inspection Pit Log

Project
Otterpool Phase 2
Client
Folkestone and Hythe District Council

Project No. 10011914 Easting (OS mE) 611814.50

Ground Level (mAOD) 104.45 Northing (OS mN) 135121.40

Start Date 29/08/2018 End Date 29/08/2018

Scale **1:25** Sheet 1 of 1

SAMPLE	ES		TESTS	3	z s		STRATA					
Depth	Type/ No.	Depth	Type/ No.	Results	Water Strikes		Description		Legend	Depth (Thickness)	Level	Install/ Backfill
0.00 - 0.10	ES1	- 0.10 	PID	<1ppm		glass. [TOPSOIL] MADE GROUND: Soft to firm	gravelly SILT, with abundant roots and rootlet gular to subrounded fine to coarse flint and rate of the subrounded fine to coarse flint and rate of the subrounded fine to coarse flint and rate of the subrounded fine to coarse flint and rate of the subrounded fine to coarse flint flint from the subrounded fine to coarse flint fli	/elly	W W.	(0.10) 0.10	104.35	
- 0.50 - 0.60 	ES2	- - - 0.60	PID	<1ppm			1 cm plastic coat	ted wire.		(0.90)		
- 0.90 - 1.00 	ES3	1.00	PID	<1ppm						1.00 -	-103.45	
-		-										
-		-										
-		- - - - -										
-		- - - - - -										
-		- - - - - -								-		
		- - - - -										
-		- - - - - -								-		
-		- - - - -										
-		-										
- - -		- - -								-		
PLAN DETAIL	L S	0.3		Long Axis	Orientati		emarks spection pit terminated at scheduled depth of	1.00m bgl	. Groundv	vater not en	countere	ed.
0.3				Shoring / Stability:	Stable					Term	ination l	Depth:
											1.00n	n

MT

Checked By

Trial Pit Photography Sheet

HD201

Otterpool Phase 2

Folkestone and Hythe District Council

Job No 10011914 Easting (OS mE) 611814.50

Ground Level (mAOD) type Northing (OS mN) 135121.40

Start Date 29/08/18 End Date **29/08/18**

[HAND PIT NUMBER 201: GL- 1.0m]

Equipment Used

Logged By

Project No. 10011914 Easting (OS mE) 611084.23

Ground Level (mAOD) 97.83 Northing (OS mN) 136091.54

Start Date 23/08/2018 End Date 23/08/2018

Scale **1:25** Sheet 1 of 1

SAMPLE	ES		TEST	S	- Se	STRATA		5		I==4=II/
Depth	Type/ No.	Depth	Type/ No.	Results	Water Strikes	Description	Legeno	Depth (Thickness)	Level	Install/ Backfill
- 0.20 - 0.20 - 0.40 - 0.20 - 0.40	ES B1 ES2	- - - 0.20	PID	<1ppm		MADE GROUND: Soft brown slightly sandy slightly gravelly organic CLAY. is fine to course. Gravel is subangular to rounded fine to medium of flint.	Gand	(0.40)		
- 0.60 - 0.80 - 0.60 - 0.80	B3 ES4	- - - - - - - - - - -	PID	<1ppm		Soft to firm brown slightly sandy slightly gravelly CLAY. Sand is fine to coars Gravel is subangular to rounded fine to medium of flint. Rare pockets of blac clay. Relic roots noted throughout. [HEAD DEPOSITS]	e. k	0.40	Ī	
- 1.20 - 1.20 - 1.30 - 1.20 - 1.30	ES B5 ES6	- 1.20 	PID	<1ppm				A SA TANA A SA T	+ + + + + + + + + + + + + + + + + + +	
- 1.60 - 1.80 - 1.60 - 1.80	B7 ES8	- 1.60 	PID	<1ppm				(2.30)	† 	
2.10 - 2.30 2.10 - 2.30	B9 ES10	- 2.10 - 2.10 	PID	<1ppm						
- 2.80 - 3.00 - 2.80 - 3.00	B11 ES12	- - - 2.80 - -	PID	<1ppm		Soft light brown mottled grey very sandy CLAY. Sand is fine to medium. [HEAD DEPOSITS]	X X X X X X X X X X X X X X X X X X X	2.70	95.13	
- - - - - - - - -	B13	- - - - - - -				Weak light grey LIMESTONE. [HYTHE FORMATION]	X X X X X X X X X X X X X X X X X X X	3.30 (0.10) 3.40	94.53	
- - - - - - - - - - - -									† † † † † † † †	
PLAN DETAIL	ĹS	2.8		Long Axis		Remarks on: Trial pit terminated on bed rock. Groundwater not	encountered.	1		•
0.6				Shoring / Stability:	Support: Stable	None		Tern	nination 3.40r	

JCB 3CX

SH

Trial Pit Photography Sheet

TP203

Otterpool Phase 2

Folkestone and Hythe District Council

Job No 10011914 Easting (OS mE) 611413.92

Ground Level (mAOD) 97.70 Northing (OS mN) 135926.65

Start Date 31/08/18 End Date **31/08/18**

[TRIAL PIT NUMBER 203: GL- 1.30m]

[TRIAL PIT NUMBER 203: SPOIL]

МТ

Project No. 10011914 Easting (OS mE) 611272.97

Ground Level (mAOD) 97.39 Northing (OS mN) 136042.29

Start Date 23/08/2018 End Date 23/08/2018

Scale **1:25** Sheet 1 of 1

SAMPLI	ES		TEST	S	S. S.		STRATA		_		,
Depth	Type/ No.	Depth	Type/ No.	Results	Water Strikes		Description	Legend	Depth (Thickness)	Level	Install/ Backfill
- - - 0.20 - 0.30 - 0.20 - 0.30	B1 ES2	- - - 0.20	PID	<1ppm		rich CLAY. Sand is fine to	over soft brown slightly sandy slightly gravelly organic coarse. Gravel is subangular to rounded fine to s and rootlets. Occasional fragments of metal		(0.30)	ļ	
- 0.40 - 0.50 - 0.40 - 0.50 0.40 - 0.50	B3 ES4	- 0.40	PID	<1ppm		Firm to stiff light brown to [HEAD DEPOSITS]	brown slightly sandy CLAY. Sand is fine to coarse		0.30	<u> </u>	
- - - - -1.00 - 1.10 - 1.00 - 1.10 - - -	B5 ES6	- - - - - - - - - - -	PID	<1ppm					(1.30)		
- 1.60 - 1.70 - 1.60 - 1.70	B7 ES8	- 1.60 	PID	<1ppm		Firm light grey mottled light Sand is fine to medium. Climestone. [HEAD DEPOSITS]	nt brown very sandy CLAY with high cobble content. Cobbles are angular to subangular of weak light grey	X X X X X X X X X X X X X X X X X X X	1.60	95.79	
	B9 ES10	- 2.00 	PID	<1ppm				X X X X X X X X X X X X X X X X X X X	(0.90)		
- - 2.50 - 2.60 - - -	B11	-				Weak light grey LIMESTO [HYTHE FORMATION]	NE with brown staining	X	2.50 (0.10) 2.60		
PLAN DETAIL	LS	3.2		Shoring / Stability: Groundw	Support: Stable	145 None	Remarks Trial pit terminated on bedrock. Groundwater not enco	untered.	Tern	nination	

JCB 3CX

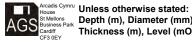
TP201

Otterpool Phase 2

Folkestone and Hythe District Council

Job No 10011914 Easting (OS mE) 611084.23

Ground Level (mAOD) 97.83 Northing (OS mN) 136091.54


Start Date 23/08/18 End Date **23/08/18**

[TRIAL PIT NUMBER 201: GL- 3.40m]

[TRIAL PIT NUMBER 201: SPOIL]

SH

Project No. 10011914 Easting (OS mE) 611413.92

Ground Level (mAOD) **97.70**Northing (OS mN) **135926.65**

Start Date 31/08/2018 End Date 31/08/2018

Scale **1:25** Sheet 1 of 1

SAMPLI	ES		TEST	S	er		STRATA			Depth		Install/
Depth	Type/ No.	Depth	Type/ No.	Results	Water Strikes		Description		Legend	(Thickness)	Level	Backfill
0.00 - 0.10	ES1	0.00	PID	<1ppm		Grass over soft dark grey fine to coarse. [TOPSOIL]	sandy CLAY with occasional roots and rootlets.	Sand is	alic alig	(0.30)		
- 0.30 - 0.40 - 0.30 - 0.40 - 0.50 - 0.70	B2 ES3	- 0.30 - - - 0.50	PID PID	<1ppm		MADE GROUND: Light br and rootlets (3mm). Grave chalk and tarmac.	own clayey gravelly fine SAND with occasional el is subangular to subrounded fine to coarse bri	roots ck,	W.	0.30	97.40	
0.50 - 0.70	ES5	- -							\Longrightarrow		ļ	
0.70	ES5	-						\ \ \		(1.00)		
1.00 - 1.00 - 1.10	B6 ES6asb							< <			 	
- - - - -		- - - -							XXXX	1.30	96.40	
- - - - -												
- - - - -		- - - -									<u> </u> - 	
- - - - -											† 	
-		-									† 	
- - - -		- - - - -									<u> </u>	
-		-										
		- - - -										
		-									 	
		-										
		- - - -									<u> </u>	
- - - - -		-									<u> </u>	
		- - -									_	
PLAN DETAIL	LS						Remarks		nia ECC	· ·		
_ _ 		3.5		Long Axis		on: 120	Terminated due to hard strata and possible ast	estos (sam	pie ES6a	iso).		
				Shoring /								
0.8				Stability: 0	Good					Tern	nination	

JCB 3CX

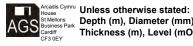
TP202

Otterpool Phase 2

Folkestone and Hythe District Council

Job No 10011914 Easting (OS mE) 611272.97

Ground Level (mAOD) 97.39 Northing (OS mN) 136042.29


Start Date 23/08/18 End Date **23/08/18**

[TRIAL PIT NUMBER 202: GL- 2.60m]

[TRIAL PIT NUMBER 202: SPOIL]

Project No. 10011914 Easting (OS mE) 611359.31

Ground Level (mAOD) 102.05 Northing (OS mN) 135749.83

Start Date 30/08/2018 End Date 30/08/2018

Scale **1:25** Sheet 1 of 1

SAMPLE	ES		TEST	3	es		STRATA		- Depth		Install/
Depth	Type/ No.	Depth	Type/ No.	Results	Water Strikes		Description	Legend	(Thickness)	Level	Backfill
0.00 - 0.20 - - - - 0.40 - 0.50 - 0.43 - 0.50	ES1 ES3 B2	0.00		<1ppm		fine to coarse. [TOPSOIL] MADE GROUND: Grey br	sandy CLAY with occasional roots and rootlets. Sand is rown very gravelly silty fine to coarse SAND. Gravel is of tarmac, chalk, sandstone, brick, metal and plastic.		(0.40)	101.65	
	R4	- - - - - - - - - - - - - - - - - - -	PID	<1ppm		cabangalai iiilo to coalco	or tarriato, orialis, carlestorio, priosi, metal and placeto.				
-1.00 - 1.20 - 1.00 - 1.20 	B4 ES5			· PP···					(1.50)		
- - - - - - - - -		- - - - - - - -							4 4 1.90 -	100.15	
-		- - - - - - - -									
-		- - - - - - -							-		
-		- - - - - - - -									
-		- - - - - - -							-		
-		- - - - - - - -								† - - - - - - - - - - - - - - - - - - -	
E		_							_	-	
PLAN DETAIL	.S	<u> </u>			<u> </u>		Remarks		1	I	1
-		2.7		Long Axis	Orientat	ion:	Terminated at scheduled depth. Groundwater not enco	untered.			
Tİ				i i		90					
				Shoring /	Support:	None					
0.8				Stability:	Stable						
				Groundwa	ater (desc	cription):				nination	
										1.90n	n

JCB 3CX

TP204

Otterpool Phase 2

Folkestone and Hythe District Council

Job No 10011914 Easting (OS mE) 611359.31

Ground Level (mAOD) 102.05 Northing (OS mN) **135749.83**

Start Date 30/08/18 End Date **30/08/18**

[TRIAL PIT NUMBER 204: GL- 1.90m]

[TRIAL PIT NUMBER 204: SPOIL]

МТ

Project No. 10011914 Easting (OS mE) 611305.36

Ground Level (mAOD) 107.68 Northing (OS mN) 135389.95

Start Date 30/08/2018 End Date 30/08/2018

Scale **1:25** Sheet 1 of 1

SAMPL	ES		TEST	S	- S	STRATA		I		,
Depth	Type/ No.	Depth	Type/ No.	Results	Water Strikes	Description	Legend	Depth (Thickness)	Level	Install/ Backfill
0.00 - 0.20	ES1	_ 0.00	PID	<1ppm		Soft dark grey sandy CLAY with occasional roots and rootlets. Sand is fine to	alk ale	/0.0=:	1	
0.20 0.20	Do.	- 0.20	PID	-1nnm		coarse. [TOPSOIL]	112 No	0.20)	107.40	
- 0.20 - 0.30 - 0.20 - 0.30	B2 ES3	0.20	PID	<1ppm		MADE GROUND: Yellowish brown gravelly silty fine to medium SAND. Gravel is angular to subangular fine to coarse sandstone, flint and brick.		0.20	107.40	
-		-				angular to cooling and mile to cooling canadians, militaria priori			1	
-		-							‡	
-		-							†	
- 0.70 - 0.80 - 0.70 - 0.80	B4 ES5	0.70	PID	<1ppm				(1.00)	1	
0.70 - 0.00	200	_							+	IIII — III 1
-		-							†	
140 400	D.C.	— 1.00 -	PID	<1ppm					Ť	
- 1.10 - 1.20 - 1.10 - 1.20	B6 ES7	[1.20	106 48	
_		_						1.20	100.40	
-		-								
-		-							‡	
Ē		Ē							Ī	
_		_							1	
-		-							1	
-		-							‡	
-		-							†	
Ē		Ē							Ī	
									1	
-		-							ļ	
-		-							‡	
-		-							†	
E		Ē							1	
[1	
-		_								
-		-							†	
-		-							ļ	
Ē		Ē							Ī	
-		_							ļ	
-		_							-	
-		-							ļ	
-		-							†	
[[-	
-		_							ļ	
-		_							†	
-		-							1	
-		-							†	
E									1	
-		_							1	
-		-							1	
-		-							‡	
-		-							†	
E		E							1	
<u>-</u>									Ŧ	
PLAN DETAIL	LS					Remarks	•			•
		2.8		Long Axis	Orientat	on: Terminated due to ground instability. Groundwater not en	countered	I.		
						97				
0.9				Shoring /		None				
				Stability:		viotion):		Torr	nination	Denth:
				Groundwa	ater (desc	яриоп).		lell		
+									1.20r	n

JCB 3CX

TP205

Otterpool Phase 2

Folkestone and Hythe District Council

Job No 10011914 Easting (OS mE) 611305.36

Ground Level (mAOD) 107.68 Northing (OS mN) 135389.95

Start Date 30/08/18 End Date 30/08/18

[TRIAL PIT NUMBER 205: GL- 1.20m]

[TRIAL PIT NUMBER 205: SPOIL]

МТ

Project No. 10011914 Easting (OS mE) 611554.23

Ground Level (mAOD) 94.94 Northing (OS mN) 136009.84

Start Date 31/08/2018 End Date 31/08/2018

Scale **1:25** Sheet 1 of 1

SAMPLI	ES		TEST	S	er	STRATA			Depth		Install/
Depth	Type/ No.	Depth	Type/ No.	Results	Water Strikes	Description	ı	Legend	(Thickness)	Level	Backfill
0.00 - 0.15	ES1	0.00	PID	<1ppm		Black silty fine to coarse SAND with occasional rootlets. [TOPSOIL]	ý	16	(0.15)		
- 0.15 - 0.25 - 0.15 - 0.25	B2 ES3	- 0.15	PID	<1ppm		Orange brown clayey fine to coarse SAND. [HEAD DEPOSITS]	, ,	le	0.15	94.79	
Ė		_				[HEAD DEPOSITS]			(0.25)		
		_				Weathered brown SANDSTONE recovered as sandy gravelly COBBI	ES. Sand is	, a ° a 0 ° a	0.40	94.54	
-		- -				fine to coarse. Gravel is angular fine to coarse sandstone. [HYTHE FORMATION]	· · · · · · · · · · · · · · · · · · ·	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	(0.30)		
		-					i,	0 4 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.70	94.24	
-		- -									
[- - -									
-		-							_	-	
E		-									
-		-									
Ė		_									
-		<u>-</u> -							-		
Ė		_									
-		-									
-		-									
-		_							_	-	
-		- -									
[-									
-		-									
-		- - -							-		
-		- -									
E		-									
		_									
_		-							-	-	
-		-									
[- - -									
-		- -								-	
Ė		-									
		-									
-		-									
		_							_		
-		- -									
[-									
-		- -									
E		_									
<u> </u>		- -									
E		_									
-		-									
_		<u>-</u>									
PLAN DETAIL	9	-				Remarks			_		
E LAIN DE IAIL	_0	3.0		Long Axis	Orientati		encountered.				
						110					
0.8				Shoring /		None					
				Stability: (rintion):			Term	ination [Depth:
				Groundwa	ater (uesc	inpuorij.				0.70n	- 1
										0.7011	1

JCB 3CX

MT

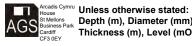
TP206

Otterpool Phase 2

Folkestone and Hythe District Council

Job No 10011914 Easting (OS mE) 611554.23

Ground Level (mAOD) 94.94 Northing (OS mN) **136009.84**


Start Date 31/08/18 End Date **31/08/18**

[TRIAL PIT NUMBER 206: GL- 0.70m]

[TRIAL PIT NUMBER 206: SPOIL]

Project No. 10011914 Easting (OS mE) 611346.30

Ground Level (mAOD) 106.42 Northing (OS mN) 135066.67

Start Date **24/08/2018** End Date **24/08/2018**

Scale **1:25** Sheet 1 of 1

SAMPLE	ES		TEST	S	es	STRATA		Depth		Install/
Depth	Type/ No.	Depth	Type/ No.	Results	Water Strikes	Description	Legend	(Thickness)	Level	Backfill
0.00 - 0.15 0.00 - 0.15	B1 ES2	0.00	PID	<1ppm		Grass over grey brown slightly gravelly clayey fine to medium SAND. Gravel is subangular to subrounded fine to medium flint.	NK:	(0.20)		
- 0.20 - 0.40	B3	- - 0.20	PID	<1ppm		[TOPSOIL] MADE GROUND: Brown slightly gravelly clayey fine SAND. Gravel is subangular	3/16 - 3/16 3/16 - 3/16	0.20	106.22	
0.20 - 0.40	ES4	-				to subrounded fine to medium flint with rare glass.			1	Ⅲ₩Ⅲ
Ē									1	
_		_							†	∷ Ш≣
-		-						(0.80)	†	
Ē								}	İ	₩Œ₩
-		_						}		
1.00 - 1.20	B5	1.00	PID	<1ppm		Brown mottled orange brown silty fine to coarse SAND.		1.00	1 105.42	
1.00 - 1.20	ES6					[HYTHE FORMATION]	×××		İ	╙╫╙
-		_					× × ×	(0.50)		
-		- -					x × ×	. ` ´	†	III = III :
1.50 - 1.70	B7	- - - 1.50	PID	<1ppm			× × ×	1.50	104 02	
1.50 - 1.70	ES8	1.50	FID	Гіррііі		Light brown mottled light grey slightly clayey fine to medium SAND with rare sandstone.		1.50	104.92	III = III 3
-		- -				[HYTHE FORMATION]			ļ	
E									İ	
E								(0.90)		
-		-							†	≡≡
- 2.20 - 2.40	B9	- - - 2.20	PID	<1ppm					İ	
2.20 - 2.40	ES10	2.20	FID	Гіррііі		Becoming mottled orange brown.			1	╙╫╙
-		- -				Weathered brown SANDSTONE recovered as subangular cobbles and boulders		2.40	104.02	
-		-				of sandstone on clayey sand matrix.	:::::	(0.20)		
[[HYTHE FORMATION]		2.60	103.82	
-		-								
-		-							‡	
-		-							1	
-		-							1	
-		-							1	
-		-							ţ	
Ė									İ	
-		-								
-		-							†	
-		_							+	
[
-		-							ļ	
-		-							1	
E									1	
-		-							‡	
F		-							†	
E									1	
-		<u>-</u> -							<u> </u>	
		<u> </u>							†	
PLAN DETAIL	LS				0	Remarks Terminated on hadrack, Craundwater not appountered				
		2.7		Long Axis	Orientati					
						72				
				Shoring /	Support:	None				
0.7				Stability:				_		
				Groundwa	ater (desc	cription):		Tern	nination	
									2.60n	n
						•				

JCB 3CX

MT

TP208

Otterpool Phase 2

Folkestone and Hythe District Council

Job No 10011914 Easting (OS mE) 611346.30

Ground Level (mAOD) 106.42 Northing (OS mN) **135066.67**

Start Date 24/08/18 End Date **24/08/18**

[TRIAL PIT NUMBER 208: GL- 2.60m]

[TRIAL PIT NUMBER 208: SPOIL]

Project No. 10011914 Easting (OS mE) 611499.37

Ground Level (mAOD) 106.34 Northing (OS mN) 135018.78

Start Date **24/08/2018** End Date **24/08/2018**

Scale **1:25** Sheet 1 of 1

SAMPL	LES		TEST	'S	- S	S	TRATA				. ,
Depth	Type/ No.	Depth	Type/ No.	Results	Water	Descrip	tion	Legend	Depth (Thickness)	Level	Install/ Backfill
0.00 - 0.20	ES1	_ 0.00	PID	<1ppm		Grass over brownish grey slightly gravelly of frequent rootlets. Gravel is subangular to s	clayey fine to medium SAND with	مالد: . <u></u>	(0.20)		
- 0.20 - 0.40	B3	0.20	PID	<1ppm		[TOPSOIL]	ubiodilded line to medium liint.	112 16 16 16 16 16 16 16 16 16 16 16 16 16	0.20	106.14	
0.20 - 0.40	ES2	-		''		Greyish brown very silty fine SAND. [HYTHE FORMATION]		×××			
E								×××			
-		-						× × ×	-	+	
								`x	(0.90)		≝∥≝ ⊍≣⊍∶
-		-						x × x × x			
0.90 - 1.00	ES4	0.90	PID	<1ppm				× × ×			
-		-						* × ×	- 440	405.04	
						Brown mottled orange clayey fine to coarse [HYTHE FORMATION]	e SAND.		1.10	105.24	≡ = = :
-		-							(0.50)		
- 1.40 - 1.50 - 1.40 - 1.50	B5 ES6	-							(0.50)		
-		-							4.00	t	≡∥≡
Ē		_				Soft orangish brown mottled grey very sand [HYTHE FORMATION]	dy SILT. Sand is fine to coarse.	(1.60 (0.20)	104.74	
- 1.80 - 2.00	B7	- 1.80	HV(1)	25(10)kPa		Soft light brown mottled orangish brown sa	ndy clavey SILT with low cobble	(1.80	104.54	
- 1.80 - 2.00 - 1.80 - 2.00	D9 ES8	- 1.80 - 1.80	HV(2) HV(3)	26(10)kPa 28(12)kPa		content. Sand is fine to coarse. Cobbles ar sandstone.	e subangular to subrounded	(ł	
-		-				[HYTHE FORMATION]		:	(0.55)	-	
Ē						=	Becoming silty sandy CLAY.	$\times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times $	(5.55)		
ļ.		-						(l	
Ē									2.35	103.99	
-		-								-	
E											
-		-									
Ē											
-		-							-	-	
E											
-		-									
E											
-		-									
-		-									
Ė		-								İ	
-		-							-	+	
Ė		Ė								<u> </u>	
-		-									
Ė		<u> </u>								•	
F		-								 	
Ė		_								•	
-		-									
Ė		_								<u> </u>	
		_							-	_	
PLAN DETA	ILS					Remarks					
		2.7		Long Axis	s Orientati		cheduled depth. Groundwater not encount	ered.			
						65					
				Shoring /	Support:	lone					
0.6				Stability:					_		
				Groundw	ater (desc	iption):				ination I	
										2.35n	า

JCB 3CX

TP209

Otterpool Phase 2

Folkestone and Hythe District Council

Job No 10011914 Easting (OS mE) 611499.37

Ground Level (mAOD) 106.34 Northing (OS mN) **135018.78**

Start Date 24/08/18 End Date **24/08/18**

[TRIAL PIT NUMBER 209: GL-2.35m]

[TRIAL PIT NUMBER 209: SPOIL]

МТ

Project No. 10011914 Easting (OS mE) 611704.38

Ground Level (mAOD) 106.43 Northing (OS mN) 135114.52

Start Date 28/08/2018 End Date 28/08/2018

Scale **1:25** Sheet 1 of 1

SAMPLI	ES		TEST	S	Je Se		STRATA	D"		Incta!!/	
Depth	Type/ No.	Depth	Type/ No.	Results	Water Strikes		Description	Legend	I		Install/ Backfill
0.00 - 0.20	ES1	0.00 - - - - - - - - - -	PID	<1ppm		charcoal. [TOPSOIL]	e to medium SAND with frequent 1 mm rootlets. Rare	alte Me alte Ale alte Me	(0.30)		
- 0.30 - 0.40 - 0.30 - 0.40 - - - -	ES3	- 0.30 	PID	<1ppm			ly gravelly slightly sandy SILT with frequent 1mm arse. Gravel is subrounded fine to medium flint.	* * * * * * * * * * * * * * * * * * *	**************************************		
- 0.80 - 0.90 - 0.80 - 0.90 1.00 - 1.10	B4 ES5	- 0.80 - - - - 1.00	PID	<1ppm		Becoming grey n	nottled light brown and orangish brown with rare charcoal.		(1.00)	1	
	B6 ES7	- 1.00 - - - -	PID	<1ppm		Cliff aroung brown mothless	d argunary conductil T with frequent periods (400mm)	* * * * * * * * * * * * * * * * * * *	1 30	105.13	
- 1.30 - 1.40 - - - - - -	ES9	- - 1.40 - - - - -	PID	<1ppm		of brown clay. Sand is fine [HEAD DEPOSITS]	i grey very sandy SILT with frequent pockets (100mm) to coarse.	× × × × × × × × × × × × × × × × × × ×	(0.50)	 	
- - 1.80 - 1.90 - 1.80 - 1.90 - - -	B10 ES11	- - - - - -				Stiff light brown mottled or [HEAD DEPOSITS]	range and red very sandy SILT. Sand is fine to coarse.	(1.80	+	
- - - - - 2.40 - 2.50	B12	- - - - 2.40	PID	<1ppm				(1		
- 2.40 - 2.50 	ES13	- - - -						- (X X X	2.50	103.93	
- - - - - -		- - - - -								+	
- - - - -		- - - - - -									
- - - - -		- - - - -									
- - - - -		- - - -								+	
- - - -		- - - -									
- - - - -		- - - - -								† †	
- - - - -		- - - -									
							le .			†	
PLAN DETAIL	LS	2.7		Long Axis	s Orientati	ion:	Remarks Terminated at scheduled depth. Groundwater not encou	ntered. Pe	rmeability te	est underta	aken.
T -		۷.1				114					
0.6				Shoring / Stability:		None					
				1	ວເລນເອ ater (desc	cription):			Terr	nination D	epth:
1										2.50m	ı

JCB 3CX

TP210

Otterpool Phase 2

Folkestone and Hythe District Council

Job No 10011914 Easting (OS mE) **611704.38**

Ground Level (mAOD) 106.43 Northing (OS mN) **135114.52**

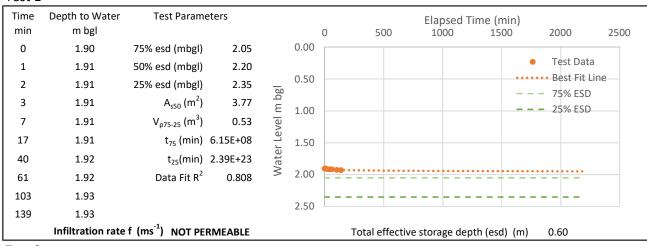
Start Date 28/08/18 End Date **28/08/18**

[TRIAL PIT NUMBER 210: GL- 2.5m]

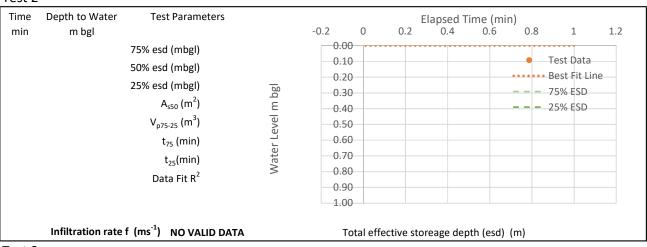
[TRIAL PIT NUMBER 210: SPOIL]

Trial Pit Soakaway Test

Based on BRE DG 365:2016



Project	Otterpool - Phase 2	Status	LOCATION ID
Project ID	10011914	CHECKED	TP210


Trial Pit Details

	Test 1 T	Test 2	Test 3	Ground Level	106.43 mAOD	Date Excavated	28/08/2018
Depth	2.50			Coordinates	611704.38 mE	Date Tested	28/08/2018
Width	0.65			Coordinates	135114.52 mN		
Length	2.70						

Test 1

Test 2

Test 3

Time Depth to Water To	est Parameters			Е	lapsed T	ime (mir	1)		
min m bgl		-0.2	0	0.2	0.4	0.6	0.8	1	1.2
75% e	sd (mbgl)		00				••••		
50% e	sd (mbgl)	0.	10					st Data	
25% e	sd (mbgl)		20				•••• Be	st Fit Lin	e
	A_{s50} (m ²)	<u>0</u> .	30				 75	% ESD	
	A _{s50} (III)	<u></u>	40				25	% ESD	
V	_{p75-25} (m ³)		50						
	t ₇₅ (min)	<u>0</u> .	60						
	t ₂₅ (min)	ate	70						
D	oata Fit R ²	≥0.	80						
		-0.	90						
		1.	00						
Infiltration rate f (ms ⁻¹) NO VALID DATA		Total eff	ective sto	reage dep	oth (esd)	(m)		
Carried out by	Notes:					Log	ged	Chec	ked
Arcadis Consulting (UK) Ltd							MT		SH

Project No. 10011914 Easting (OS mE) 611768.81

Ground Level (mAOD) 101.70 Northing (OS mN) 135322.39

Start Date 28/08/2018 End Date 28/08/2018

Scale **1:25** Sheet 1 of 1

Γ	SAMPLE	SAMPLES TESTS		s	se es		STRATA		Donth		Install/	
	Depth	Type/ No.	Depth	Type/ No.	Results	Water Strikes		Description	Legend	Depth (Thickness)	Level	Backfill
	0.00 - 0.20	ES1	0.00 	PID	<1ppm		Grass over brown grey gra subrounded fine to coarse [TOPSOIL]	avelly clayey fine to medium SAND. Gravel is angular to flint and chalk.	alic Air	(0.30)	†	
	0.30 - 0.40 0.30 - 0.40	B2 ES3	- 0.30 - - - -	PID	<1ppm		Very stiff orange brown ve [HEAD DEPOSITS]	ry sandy CLAY. Sand is fine to coarse.		0.30 (0.35)	101.40	
	0.65 - 0.80 0.65 - 0.90	B4 ES5	- - - - - 0.80 - - -	PID	<1ppm			orange and black slightly gravelly slightly slity slightly ckets of clay. Sand is fine to coarse. Gravel is angular to flint. Sandstone bands.	***** ***** ***** *****	0.65	101.05	
	1.30 - 1.40 1.30 - 1.40	B6 ES7	- - - - - - 1.40 - -	PID	<1ppm				* * * * * * * * * * * * * * * * * * *	(1.25)		
	1.90 - 2.00 1.90 - 2.00	B8 ES9	- - - - - 1.90 - - -	PID	<1ppm		Extremely weathered wea clayey fine SAND. [HYTHE FORMATION]	k yellowish brown SANDSTONE recovered as brown	* * * * * * * * * * * * * * * * * * *	1.90 (0.15) 2.05		
	-		- - - - - - -							-		
			-									
	-		- - - - - - -									
			-									
			-									
P	LAN DETAIL	 .s	<u>-</u>					Remarks				\sqcup
Ė			2.0		Long Axis	Orientati	on:	Terminated at scheduled depth. Groundwater not encou	ntered. Pe	rmeability te	st under	taken.
	T						120					
					Oh- : /							
0	0.6				Shoring / Stability: 0		None					
					Groundwa		eription):				ination l	

JCB 3CX

TP211

Otterpool Phase 2

Folkestone and Hythe District Council

Job No 10011914 Easting (OS mE) 611768.81

Ground Level (mAOD) 101.70 Northing (OS mN) **135322.39**

Start Date 28/08/18 End Date **28/08/18**

[TRIAL PIT NUMBER 211: GL- 2.05m]

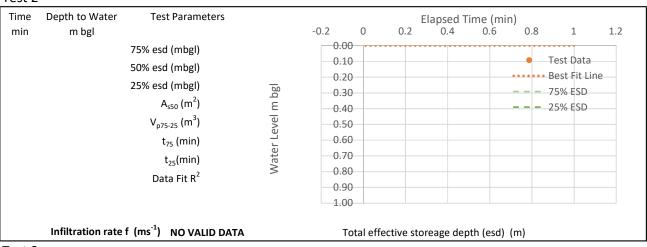
[TRIAL PIT NUMBER 211: SPOIL]

Trial Pit Soakaway Test

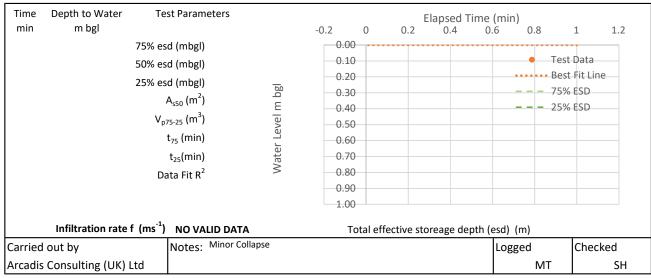
Based on BRE DG 365:2016



Project	Otterpool - Phase 2	Status	LOCATION ID
Project ID	10011914	CHECKED	TP211


Trial Pit Details

	Test 1 Test 2 Test 3	Ground Level	101.70 mAOD	Date Excavated	28/08/2018
Depth	2.05	Coordinates	611768.81 mE	Date Tested	28/08/2018
Width	0.65	Coordinates	135322.39 mN		
Length	2.50				


Test 1

Test 2

Test 3

Project No. 10011914 Easting (OS mE) 612827.41

Ground Level (mAOD) 84.34 Northing (OS mN) 136317.89

Start Date 21/08/2018 End Date 21/08/2018

Scale **1:25** Sheet 1 of 1

SAMPLE	SAMPLES TESTS	S	es		STRATA		- Depth		Install/		
Depth	Type/ No.	Depth	Type/ No.	Results	Water		Description	Legend	(Thickness)	Level	Backfill
0.00 0.00 - 0.30 - 0.00 - 0.30 - 0.00 - 0.30 - 0.30 - 0.50 - 0.30 - 0.50	ES B1 ES2 B3 ES4	0.00 - - - - - - 0.30	PID	<1ppm		to medium. Gravel is suba noted. [TOPSOIL]	n sandy slightly gravelly organic rich CLAY. Sand is fine ingular to rounded medium to coarse flint. Rare rootlets rangish brown very gravelly CLAY. Gravel is	alte Ale	(0.30)	84.04	
- 0.30 - 0.50	E54	-				subangular to rounded fin [SANDGATE FORMATIOI	e to coarse of flint.		(0.70)		
- - - - 1.00	D5	- - - - 1.00	PID	<1ppm			p pocket (0.20 x 0.20m) of soft orange brown sandy CLAY.		1.00	83 34	
- 1.00 - 1.20 - 1.00 - 1.20 - 1.20 - 1.50 - 1.20 - 1.50	B5 ES6 B7 ES8	1.00 1.01 1.02 1.20	HV(1) HV(2) HV(3) PID	35(30)kPa 40(30)kPa 60(50)kPa <1ppm		Soft light brown mottled or [SANDGATE FORMATIO]	rangish brown sandy silty CLAY. Sand is fine to coarse. N	X X X X X X X X X X X X X X X X X X X			
-		- - - 1.50 - 1.51 - 1.52	HV(4) HV(5) HV(6)	30(25)kPa 40(35)kPa 50(45)kPa				X X X X X X X X X X X X X X X X X X X	(0.80)		
- 1.80 - 2.00 - 1.80 - 2.00 - 2.00 - 2.25	B9 ES10	- - 1.80 - - - - 2.00	PID PID	<1ppm		Firm dark grey mottled ora coarse. [SANDGATE FORMATION	angish brown slightly sandy CLAY. Sand is fine to	×	1.80	82.54	
- 2.00 - 2.25 - - - -	ES12	- 2.00 - 2.01 - 2.02 	HV(7) HV(8) HV(9)	50(42)kPa 60(48)kPa 55(48)kPa					(0.70)		
-		- - -							2.50	81.84	
_		<u> </u>								+	
PLAN DETAIL	.S	2.1		Long Axis	Orientati	ion:	Remarks Trial pit terminated at scheduled depth. Groundwater no undertaken.	t encounte	red. Permea	ability tes	st
0.6				Shoring / Stability:	Stable				Tern	nination 2.50r	

JCB 3CX

SH

TP213

Otterpool Phase 2

Folkestone and Hythe District Council

Job No 10011914 Easting (OS mE) 612827.41

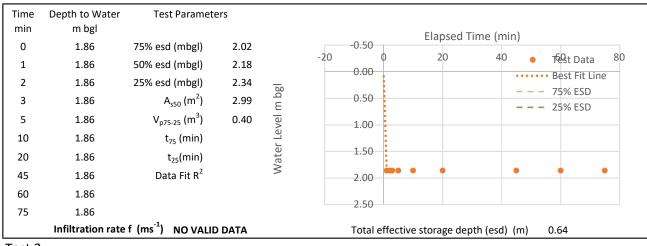
Ground Level (mAOD) 84.34 Northing (OS mN) **136317.89**

Start Date 21/08/18 End Date **21/08/18**

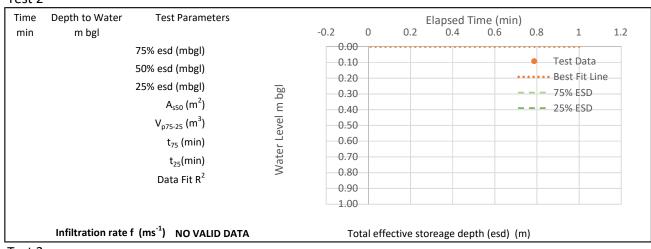
[TRIAL PIT NUMBER 213: GL- 2.50m]

[TRIAL PIT NUMBER 213: SPOIL]

Based on BRE DG 365:2016



Project	Otterpool - Phase 2	Status	LOCATION ID
Project ID	10011914	CHECKED	TP213


Trial Pit Details

	Test 1	Test 2	Test 3	Ground Level	84.34 mAOD	Date Excavated	21/08/2018
Depth	2.50			Coordinates	612827.41 mE	Date Tested	21/08/2018
Width	0.60			Coordinates	136317.89 mN		
Length	2.10						

Test 1

Test 2

Time Depth to Water Tes	st Parameters			Е	lapsed T	ime (mir	1)		
min m bgl		-0.2	0	0.2	0.4	0.6	0.8	1	1.2
75% es	d (mbgl)		.00	••••					
50% es	d (mbgl)	0	.10					est Data	
25% esc	d (mbgl)		.20				•••• Be	est Fit Lin	e
	A_{s50} (m ²)	0	.30				75	5% ESD	
	1 _{s50} (111)	E 0	.40				25	5% ESD	
V_{p7}	₅₋₂₅ (m ³)	0	.50						
1	t ₇₅ (min)	_0	.60						
	t ₂₅ (min)	Matter Level m og	.70						
Da	ta Fit R ²	≥0	.80						
		-0	.90						
		_1	.00						
Infiltration rate f (ms ⁻¹)					reage dep	oth (esd)	(m)		
Carried out by	Notes: Test terminated	at 1.25 hrs due to	o lack of so	akage.	•	Log	ged	Chec	ked
Arcadis Consulting (UK) Ltd							SH		SH

Project No. 10011914 Easting (OS mE) 612876.90

Ground Level (mAOD) 81.68 Northing (OS mN) 136788.62

Start Date 20/08/2018 End Date 20/08/2018

Scale **1:25** Sheet 1 of 1

SAMPLE	ES		TEST	S	es	STRATA		- Depth		Install/
Depth	Type/ No.	Depth	Type/ No.	Results	Water Strikes	Description	Legend	(Thickness)	Level	Backfill
0.00 - 0.10	ES1	0.00	PID	<1ppm		Greyish brown silty fine SAND, with occasional 1mm rootlets. [TOPSOIL]	alte ale	(0.30)	ļ	
- 0.30 - 0.40 - 0.30 - 0.40	B3 ES2	- 0.30 -	PID	<1ppm		MADE GROUND: Very light brown clayey gravelly fine SAND. Gravel is angular to subangular fine to coarse film. Occasional 100mm pockets of grey mottled orange	alte — M	0.30	+	
- 0.60 - 0.70 - 0.60 - 0.70	D5 ES4	- - 0.60	PID	<1ppm		clayey fine sand. (REWORKED NATURAL) Soft light grey mottled orangish brown very sandy slightly gravelly CLAY. Sand is		0.60	81.08	
- - - - - - -		- - - - -				fine to coarse. Gravel is subangular to subrounded fine to medium flint. [HEAD DEPOSITS]		(0.60)		
- 1.20 - 1.25 - 1.20 - 1.25 - 1.20 - 1.25	D7 ES6	- - 1.20 - -	PID	<1ppm		Grey mottled orangish brown very silty fine SAND. [FOLKESTONE FORMATION]	× × × × × × ×	1.20	1	
- - - 1.60 - 1.65	D9	- - - 1.60	PID	<1ppm			* * * * * *	(0.45)	†	
- 1.60 - 1.65 - - 1.80 - 1.90 - 1.80 - 1.90	D1 ES10	- - - 1.80	PID	<1ppm		Dark grey mottled dark orangish brown clayey fine SAND. [FOLKESTONE FORMATION]	× × × × × × × × × × × × ×	1.65	+	
- - - -		- - - -					× × × × × × × × × × × × × × ×	(0.75)	Ī	
		-					× × × × × ×	2.40	I	
		-								
- - - -		- - - -							† † †	
- - - -		- - -								
- - - -		-								
- - - -		- - - -								
- - -		- - - -							<u> </u>	
-										
- - - -		- - - -							 	
-										
-		- - -							+	
PLAN DETAIL	S		•			Remarks				- I- 1111
		2.4		Long Axis		on: Exploratory hole terminated at scheduled depth. Ground test undertaken. 129	water not o	encountered	ı. Permea	ability
0.6				Shoring / Stability:	Stable be	None coming unstable with				
				Groundwa		cription):		Tern	nination l	

Arcadis Consulting (UK) Ltd

IT

TP214

Otterpool Phase 2

Folkestone and Hythe District Council

Job No 10011914 Easting (OS mE) 612876.90

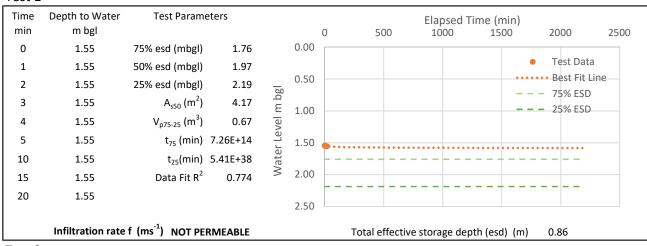
Ground Level (mAOD) 81.68 Northing (OS mN) 136788.62

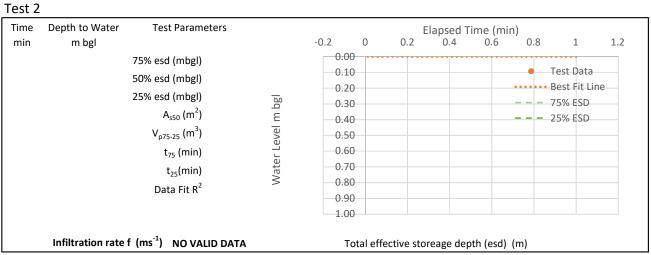
Start Date 20/08/18 End Date **20/08/18**

[TRIAL PIT NUMBER 214: GL- 2.40m]

[TRIAL PIT NUMBER 214: SPOIL]

Based on BRE DG 365:2016




Project	Otterpool - Phase 2	Status	LOCATION ID
Project ID	10011914	CHECKED	TP214

Trial Pit Details

	Test 1	Test 2	Test 3	Ground Level	81.68 mAOD	Date Excavated	20/08/2018
Depth	2.40			Coordinates	612876.9 mE	Date Tested	20/08/2018
Width	0.65			Coordinates	136788.62 mN		
Length	2.40						

Test 1

Time Depth to Water Test Parameters min m bgl	-0.2 0	Elapsed Tir	me (min) 0.6 0.8	1 1.2
75% esd (mbgl) 50% esd (mbgl) 25% esd (mbgl) A _{s50} (m ²) V _{p75-25} (m ³) t ₇₅ (min) t ₂₅ (min) Data Fit R ²	0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00			t Data t Fit Line 6 ESD
Infiltration rate f(ms ⁻¹) NO VALID DATA	Total eff	ective storeage dept	th (esd) (m)	
Carried out by Notes: Test terminated	due to soil collapse.		Logged	Checked
Arcadis Consulting (UK) Ltd			IT	SH

Project No. 10011914 Easting (OS mE) 612677.96

Ground Level (mAOD) **76.88**Northing (OS mN) **137227.18**

Start Date 20/08/2018 End Date 20/08/2018

Scale **1:25** Sheet 1 of 1

SAMPL	ES		TEST	S	ee		STRATA		Depth		Install/
Depth	Type/ No.	Depth	Type/ No.	Results	Water Strikes		Description	Legend	(Thickness)	Level	Backfill
0.00 - 0.20 - -	ES1	_ 0.00 - -	PID	<1ppm			avelly fine to coarse SAND. Gravel is subangula e of flint, pottery and brick.	r to	(0.20)	70.00	
0.30 - 0.40	B4	- 0.30	PID	<1ppm		MADE GROUND: Orangis subangular to subrounded	sh brown clayey gravelly fine to coarse SAND. (If fine to of medium flint.	Gravel is	0.20	76.68	III
- 0.30 - 0.40 - 0.30 - 0.40	D3 ES2	- - -				MADE GROUND: Browni Gravel is subangular to su	sh orange silty slightly gravelly fine to coarse SA	AND.	0.40	76.48	
_ -		-				Graver is subarrigular to st	ibrodrided line lint.			Ī	
0.70 - 0.75	ES5	0.70	PID	<1ppm					×		
_ -		- -							(0.90)	-	
		_							×	†	
		_								-	
- 1.30 - 1.35 - 1.30 - 1.35	B8 D7	1.30	PID	<1ppm		Orangish brown very silty [FOLKESTONE FORMAT		×××	1.30		
- 1.30 - 1.35 -	ES6	-				[I OLINE I ONWA!	ion	× × × ×	:	-	
1.65 - 1.70	ES9	1.65	PID	<1ppm				× × ×	1.70	1	
_		- -				Soft grey mottled orange : [FOLKESTONE FORMAT	sandy SILT. Sand is fine to coarse. ION]		 *	13.10	
-		-						((O EE)	1	
		-						× × ×	X C		
- 2.20 - 2.25 - 2.20 - 2.25 - 2.20 - 2.25	B12 D11 ES10	- 2.20	PID	<1ppm		Soft grey mottled orange	silty very sandy CLAY. Sand is fine to coarse.	× × × × × × × × × × × × × × × × × × ×	2.25	74.63	
2.20 - 2.25	E310	-				[FOLKESTONE FORMAT	ION]	^ ×	(0.25)	T	= $=$
<u> </u>		-							2.50	74.38	ш≝ш
-		-									
_		-									
-		_								+	
-		- - -									
<u>-</u>		- - -								1	
_		- - -								ļ	
-		- - -									
<u>-</u>		- - -								-	
-		-									
		_								†	
<u>-</u>		-									
E		-								1	
[-		_								-	
[-		- -									
<u> </u>		-									
-		<u>-</u> -									
PLAN DETAI	LS	_					Remarks				
-		2.6		Long Axis	Orientati	ion:	Exploratory hole terminated at required depth. undertaken.	Groundwater not e	ncountered. I	Permeab	ility test
						94					
0.8				Shoring /		None					
3.5				Stability:		cription):			Tern	nination	Depth:
					,	. ,				2.50n	
							1				

IT

SH

TP215

Otterpool Phase 2

Folkestone and Hythe District Council

Job No 10011914 Easting (OS mE) 612677.96

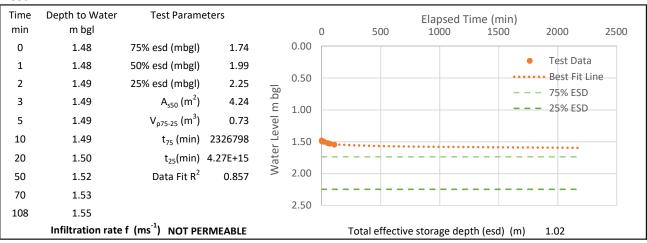
Ground Level (mAOD) 76.88 Northing (OS mN) **137227.18**

Start Date 20/08/18 End Date **20/08/18**

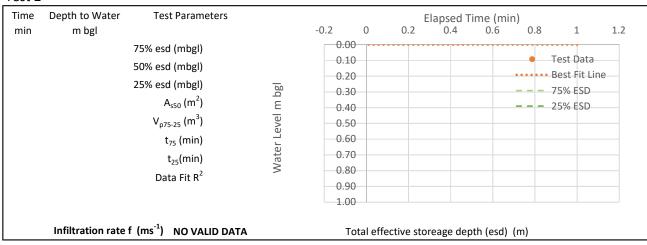
[TRIAL PIT NUMBER 215: GL- 2.50m]

[TRIAL PIT NUMBER 215: SPOIL]

Based on BRE DG 365:2016



Project	Otterpool - Phase 2	Status	LOCATION ID
Project ID	10011914	CHECKED	TP215


Trial Pit Details

	Test 1	Test 2	Test 3	Ground Level	76.88 mAOD	Date Excavated	20/08/2018
Depth	2.50			Coordinates	612677.96 mE	Date Tested	20/08/2018
Width	0.70			Coordinates	137227.18 mN		
Length	2.05						

Test 1

Test 2

Time Depth to Water	Test Parameters				Elapsed T	ime (mii	n)		
min m bgl			-0.2 0	0.2	0.4	0.6	0.8	1	1.2
	75% esd (mbgl) 50% esd (mbgl)		0.00					est Data	
	25% esd (mbgl) $A_{s50} (m^{2})$ $V_{p75-25} (m^{3})$ $t_{75} (min)$	Water Level m bgl	0.20 0.30 0.40 0.50 0.60				25	5% ESD	ne
	t ₂₅ (min) Data Fit R ²	Wate	0.70 0.80 0.90 1.00						
Infiltration rat	e f (ms ⁻¹) NO VALID DATA		Total e	fective st	oreage de	pth (esd)	(m)		
Carried out by	Notes:					Log	ged	Chec	ked
Arcadis Consulting (UK) Ltd						IT		SH

Project No. 10011914 Easting (OS mE) 611230.81

Ground Level (mAOD) 65.33 Northing (OS mN) 137524.27

Start Date 15/08/2018 End Date 15/08/2018

Scale **1:25** Sheet 1 of 1

SAMPLI	ES		TEST	S	er	STRATA		Denth		Install/
Depth	Type/ No.	Depth	Type/ No.	Results	Water Strikes	Description	Legend	I	Level	Backfill
_ 0.00 - 0.36 _ 0.00 - 0.36 -	D2 ES1	- - - - -				Grass over brown clayey gravelly fine to coarse SAND. Gravel is subangular to subrounded fine to coarse flint. [TOPSOIL]	ale ale			
- 0.36 - 0.52 - 0.36 - 0.52 - 0.36 - 0.52	B5 D4 ES3	- 0.36 - 0.36 - 0.52 - 0.52 - 0.52	PID PID PID PID PID	<1ppm <1ppm <1ppm <1ppm <1ppm		Orangish brown slightly gravelly silty fine to coarse SAND. Gravel is subangular to subrounded fine to medium flint (Re-worked). [HEAD DEPOSITS] Fragments of infilled clay pipe encountered.	***** ***** **** **** ****	0.36	ŧ	
	D11 ES6	- - - 1.10 - 1.10	PID PID	<1ppm <1ppm				(1.14)		
- 1.50 - 1.60 - 1.50 - 1.60 - 1.50 - 1.60 - 1.50 - 1.60 - 1.70 - 1.90	B9 D8 ES7 ES10	- 1.50 - 1.50 - 1.60 - 1.60 - 1.60 - 1.70 - 1.70 - 1.70 - 1.90	HV(1) HV(2) PID PID PID HV(3) HV(4) HV(5) PID	35(20)kPa 44(20)kPa <1ppm <1ppm <1ppm 30(28)kPa 56(28)kPa 56(28)kPa <1ppm		Soft to firm grey mottled reddish brown slightly silty sandy CLAY. Sand is fine to medium. [HEAD DEPOSITS]	(×××	1.50		
-		- - - - - - - -					X	(1.10)		
- - - - - - -		- - - - - - - -					* * * * *	2.60	62.73	
-		- - - - - - -								
- - - - - - - -		- - - - - - - -							† † † † †	
- - - - - - -		- - - - - - - -								
- - - - - - - -		- - - - - - -								
PLAN DETAIL	LS	2.7		Long Axis		100	itered. Pe	rmeability te	st under	taken.
5.7				Stability: 9		pription):		Terr	nination 2.60r	

JCB 3CX

TP217

Otterpool Phase 2

Folkestone and Hythe District Council

Job No 10011914 Easting (OS mE) 611230.81

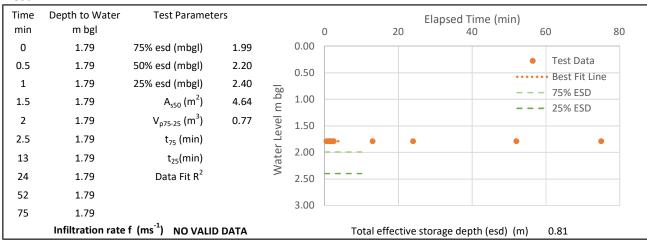
Ground Level (mAOD) 65.33 Northing (OS mN) **137524.27**

Start Date 15/08/18 End Date 15/08/18

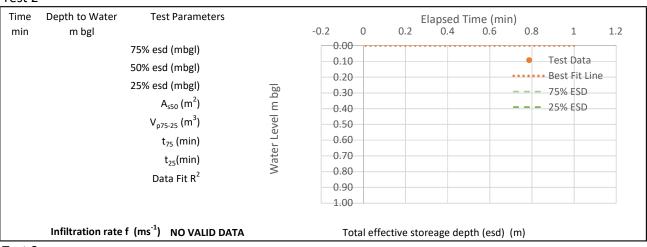
[TRIAL PIT NUMBER 217: GL- 2.60m]

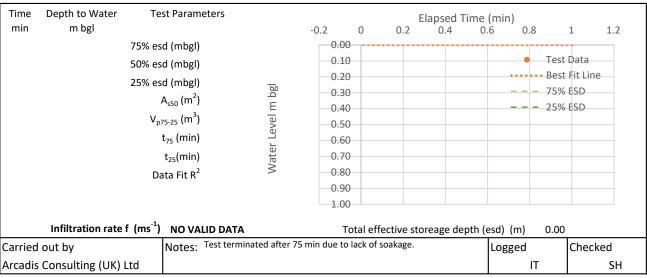
[TRIAL PIT NUMBER 217: SPOIL]

Based on BRE DG 365:2016



Project	Otterpool - Phase 2	Status	LOCATION ID
Project ID	10011914	CHECKED	TP217


Trial Pit Details


	-						
	Test 1	Test 2	Test 3	Ground Level	65.33 mAOD	Date Excavated	15/08/2018
Depth	2.60			Coordinates	611230.81 mE	Date Tested	15/08/2018
Width	0.70			Coordinates	137524.27 mN		
Length	2.70						

Test 1

Test 2

Project No. 10011914 Easting (OS mE) 609909.78

Ground Level (mAOD) 58.59 Northing (OS mN) 137648.02

Start Date 16/08/2018 End Date 16/08/2018

Scale **1:25** Sheet 1 of 1

SAMPLE	ES		TEST	S	er		STRATA		Depth		Install/
Depth	Type/ No.	Depth	Type/ No.	Results	Water Strikes		Description	Legend	(Thickness)	Level	Backfill
0.00 - 0.12	ES1	0.00 	PID	<1ppm		and vegetation. [TOPSOIL] Very soft yellowish brown	clayey fine to medium SAND with occasional rootlets		(0.30)	58.29	
- 0.40 - 0.50 - 0.40 - 0.50 - 0.40 - 0.50	B11 D7 ES2	- 0.40 - - - - - -	PID	<1ppm		charcoal. Sand is fine. [HEAD DEPOSITS]		x:	(0.60)		
- 0.90 - 1.00 - 0.90 - 1.00 - 0.90 - 1.34	D8 ES3 B12	- - - 0.90 - -	PID	<1ppm		Grey mottled orangish bro [HEAD DEPOSITS]	wn silty becoming clayey fine SAND.	*	0.90	57.69	
- - - - - 1.34 - 1.50	D9	- - - - - - 1.34	PID	<1ppm		Venedite	- Wild a see sigh become again CLAV Condition to		(0.44)	1	
- 1.34 - 1.50 - 1.34 - 1.80	ES4 B13	- - - - - - - - - -				Very soft brownish grey me coarse [ATHERFIELD CLAY FOR	ottled orangish brown sandy CLAY. Sand is fine to				
	D10 ES5	2.00 - - - - - - -	PID	<1ppm					(1.36)		
- - 2.60 - 2.70	ES6	- 2.50 - - - - -	PID	<1ppm					2.70		₩₩₩ ₩₩₩ ₩₩
		- - - - - - - - -									
-		-									
-		-									
-		-									
-		<u>-</u>								+	
PLAN DETAIL	.S	Γ	I.	I.	1		Remarks		1		
T		2.3		Long Axis		90	Terminated at scheduled depth. Groundwater not encou	ntered. Pe	rmeability te	st undert	aken.
0.6				Shoring / Stability: (Groundwa	Collapse	on face A			Tern	nination I	

JCB 3CX

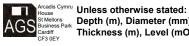
TP218

Otterpool Phase 2

Folkestone and Hythe District Council

Job No 10011914 Easting (OS mE) 609909.78

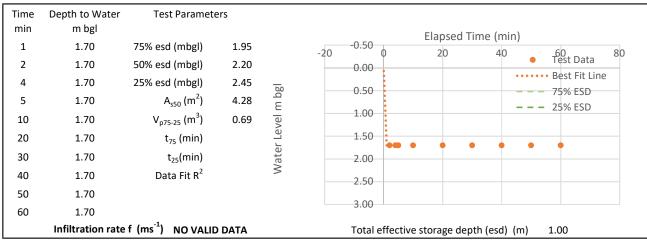
Ground Level (mAOD) 58.59 Northing (OS mN) **137648.02**


Start Date 16/08/18 End Date 16/08/18

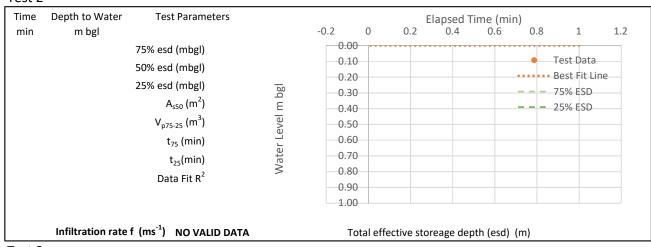
[TRIAL PIT NUMBER 218: GL- 2.70m]

[TRIAL PIT NUMBER 218: SPOIL]

Based on BRE DG 365:2016



Project	Otterpool - Phase 2	Status	LOCATION ID
Project ID	10011914	CHECKED	TP218


Trial Pit Details

	Test 1 Test 2	2 Test 3	Ground Level	58.59 mAOD	Date Excavated	16/08/2018
Depth	2.70		Coordinates	609909.78 mE	Date Tested	16/08/2018
Width	0.60		Coordinates	137648.02 mN		
Length	2.30					

Test 1

Test 2

Time Depth to Water Tes	st Parameters			Е	lapsed T	ime (mir	1)		
min m bgl		-0.2	0	0.2	0.4	0.6	0.8	1	1.2
75% es	d (mbgl)		00					•••	
50% es	d (mbgl)	0.	10					est Data	
25% es	d (mbgl)		20				•••• В	est Fit Lir	ie
	$A_{s50} (m^2)$	0.	30				7	5% ESD	
	~s50 (III)	0.	40				2	5% ESD	
V_{p7}	₇₅₋₂₅ (m ³)	0.	50						
1	t ₇₅ (min)	0.	60						
	t ₂₅ (min)	0 0 0 0	70						
Da	nta Fit R ²	≥ 0.	80						
		-0.	90						
		1.	00						
Infiltration rate f (ms ⁻¹)					reage dep	oth (esd)	(m)		
Carried out by	Notes: Test terminated	after 60 min due	to lack of	oakage.	•	Log	ged	Chec	ked
Arcadis Consulting (UK) Ltd							IT		SH

Project No. 10011914 Easting (OS mE) 610035.81

Ground Level (mAOD) **58.37**Northing (OS mN) **137518.77**

Start Date 16/08/2018 End Date 16/08/2018

Scale **1:25** Sheet 1 of 1

	SAMPLE			TESTS		es		STRATA			Denth		Install/
	Depth	Type/ No.	Depth	Type/ No.	Results	Water Strikes		Description		Legend	Depth (Thickness)		Backfill
			- - - - -				[TOPSOIL]	r fine to medium SAND with oc			(0.35)	58.02	
-			- - - -				Gravel is angular to subro	unded fine brick and concrete	with rare shells.		(0.30)		
			- - - -								0.65	57.72	
			- - - -								- -	- -	
			- - - -										
			- - - -								-		
			- - - -										
											-	_	
			- - - -										
			- - - -								- - - -		
			- - -										
											- - - -	-	
			- - - -										
			- - - -										
			- - - -										
			- - - -										
			- - - -										
			- - - -										
			- - - -								- - - -		
PLA	N DETAIL	.s	2.7		Long Axis	Orientati		Remarks Terminated due to metal pipe radio mode.	found at a depth of 0.65 mb	ogl. CAT pi	icked signal	on powe	er and
0.8					Shoring / S	Support:	20 None						
	Arcadis				Stability: Groundwa	iter (desc	ription):					ination [

Checked By

TP219

Otterpool Phase 2

Folkestone and Hythe District Council

Job No **10011914** Easting (OS mE) 610035.81

Ground Level (mAOD) 58.37 Northing (OS mN) **137518.77**

Start Date 16/08/18 End Date 16/08/18

[TRIAL PIT NUMBER 219: GL- 0.65m]

[TRIAL PIT NUMBER 219: METAL PIPE]

Project No. 10011914 Easting (OS mE) 610035.81

Ground Level (mAOD) **58.37**Northing (OS mN) **137518.77**

Start Date 16/08/2018 End Date 16/08/2018

Scale **1:25** Sheet 1 of 1

SAMPLI	ES		TEST	S	es	STRATA		Depth		Install/
Depth	Type/ No.	Depth	Type/ No.	Results	Water Strikes	Description	Legend	(Thickness)	Level	Backfill
0.00 - 0.30 0.00 - 0.30	D2 ES1	0.00 	PID	<1ppm		Grass over brown slightly gravelly clayey fine to coarse SAND with occasional roots and rootlets. Gravel is subangular to subrounded fine flint and brick. [TOPSOIL]	aliz de aliz de aliz de	(0.30)		
- - -		-				MADE GROUND: Orangish brown clayey gravelly fine to coarse SAND. Gravel is subangular to subrounded fine to coarse limestone (Reworked).		0.30		
- 0.54 - 0.64 - 0.54 - 0.64 - 0.54 - 0.64	B5 D4 ES3	- 0.54 - - -	PID	<1ppm				(0.60)		
- 0.90 - 1.00 - 0.90 - 1.00 - 0.90 - 1.00	B8 D7 ES6	- - 0.90 - -	PID	<1ppm		Orangish brown and yellowish brown mottled brown silty fine to coarse SAND with occasional 1cm charcoal pockets towards the base. [HEAD DEPOSITS]	× × × × × ×	0.90	57.46	
- - - - - - 1.40 - 1.50	B11	- - - - - - 1.40	PID	<1ppm			× × × × × × × × ×	(0.60)		
- 1.40 - 1.50 - 1.40 - 1.50	D10 ES9			- Tippiii		Weak grey mottled orange fine grained SANDSTONE. [HYTHE FORMATION]		1.50 (0.10) 1.60	56.86 56.76	
		- - - -								
		- - - -								
		- - - -								
		-								
_		- - - -						-		
		-								
		-								
		- - - - -						-		
		-								
-		- - - -								
		- - - -								
_		<u> </u>						-		
PLAN DETAIL	_S			16== 4 :	Oris-t-	Remarks TP210A is located 5m west of its original location (TP210	\ Termina	ated on bods	nck	
T		2.0		Long Axis	orientati	ion: TP219A is located 5m west of its original location (TP219 Groundwater not encountered. Permeability test undertak 20	ı. rermina en.	aeu on bedr	JCK.	
0.6				Shoring /		None				
				Stability:		cription):		Term	ination l	Depth:
									1.60n	n

JCB 3CX

Arcadis Consulting (UK) Ltd

SH

TP219A

Otterpool Phase 2

Folkestone and Hythe District Council

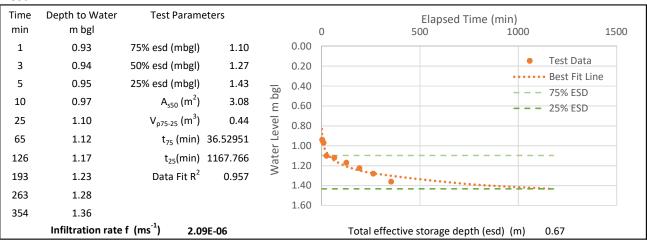
Job No **10011914** Easting (OS mE) 610035.81

Ground Level (mAOD) 58.37 Northing (OS mN) **137518.77**

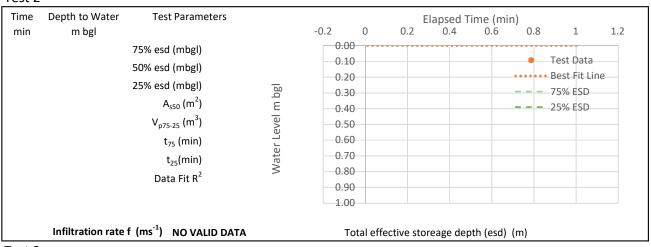
Start Date 16/08/18 End Date 16/08/18

[TRIAL PIT NUMBER 219A: GL- 1.60m]

Based on BRE DG 365:2016



Project	Otterpool - Phase 2	Status	LOCATION ID
Project ID	10011914	CHECKED	TP219A


Trial Pit Details

	Test 1 Test 2	Test 3	Ground Level	58.37 mAOD	Date Excavated	16/08/2018
Depth	1.60		Coordinates	610035.81 mE	Date Tested	16/08/2018
Width	0.65		Coordinates	137518.77 mN		
Length	2.00					

Test 1

Test 2

Time Depth to Water	Test Parameters				Elapsed T	ime (mii	n)		
min m bgl			-0.2 0	0.2	0.4	0.6	0.8	1	1.2
	75% esd (mbgl) 50% esd (mbgl)		0.00					est Data	
	25% esd (mbgl) $A_{s50} (m^{2})$ $V_{p75-25} (m^{3})$ $t_{75} (min)$	Water Level m bgl	0.20 0.30 0.40 0.50 0.60				25	5% ESD	ne
	t ₂₅ (min) Data Fit R ²	Wate	0.70 0.80 0.90 1.00						
Infiltration rat	e f (ms ⁻¹) NO VALID DATA		Total e	fective st	oreage de	pth (esd)	(m)		
Carried out by	Notes:					Log	ged	Chec	ked
Arcadis Consulting (UK) Ltd						IT		SH

Project No. 10011914 Easting (OS mE) 609640.00

Ground Level (mAOD) **64.02** Northing (OS mN) **137267.45**

Start Date 17/08/2018 End Date 17/08/2018

Scale **1:25** Sheet 1 of 1

SAMPLE	S		TEST	S	70 S	STRATA		5		14-11/
Depth	Type/ No.	Depth	Type/ No.	Results	Water Strikes	Description	Legend	Depth (Thickness)	Level	Install/ Backfill
0.00 - 0.10	ES1	_ 0.00	PID	<1ppm		Grass over brown slightly gravelly silty fine to coarse SAND with frequent pockets of clay (2cm). Gravel is subrounded fine flint.	ale ale	(0.22)		
0.22 - 0.30	В4	0.22	PID	<1ppm		[TOPSOIL]	alic al	0.22	63.80	
0.22 - 0.30 0.22 - 0.30	D3 ES2	-		''		Soft grey brown mottled orangish brown sandy CLAY. Sand is fine to coarse. [ATHERFIELD CLAY FORMATION]		(0.18)		╙╫╙
-		-				Soft light brown mottled orangish brown sandy CLAY. Sand is fine to coarse. [ATHERFIELD CLAY FORMATION]		0.40	63.62	
		- -				[ATHERPIELD CLAY FORWATION]				
0.70 - 0.76	ES5	0.70	PID	<1ppm						
		_								
1.00 - 1.10	D7	1.00	PID	<1ppm				(1.00)		
1.00 - 1.10	ES6	- 1.00	FID	Гррпп						
Ė		_								
		-								
1.40 - 1.45	ES8	- 1.40 - 1.40	PID HV(1)	<1ppm 30(10)kPa		Soft to firm becoming stiff grey brown CLAY. [ATHERFIELD CLAY FORMATION]	××	1.40	62.62	
		-				PATIENT LEED OF ATTOMATION,	×_×_			
		-					<u>×_×</u>			
- 1.80 - 1.90 - 1.80 - 1.90	D10 ES9	- 1.80 - 1.80	PID HV(2)	<1ppm 44(20)kPa			X			
_		_					×	(1.00)		
-		- -					×			
[-					<u>×</u> _×			
		-					× × ×			
- 2.40 - 2.50 -	ES11	- 2.40 - 2.50	PID HV(3)	<1ppm 50(20)kPa		Soft to firm grey brown slightly silty gravelly CLAY. Gravel is subangular to subrounded fine to coarse limestone	X	2.40 (0.10) 2.50	61.62	= = = :
-		-	111(0)	00(20)111 4		[ATHERFIELD CLAY FORMATION]	1	2.00	01.02	
-		-								
-		-								
E		-						_		
-		-								
<u> </u>		_								
		-								
Ė		-								
-		-								
		-								
-		-								
_		_								
		- -								
[_								
		-								
Ė		- - -								
		-								
[_						:		
		-								
<u> </u>		-								
PLAN DETAIL	S	-				Remarks				
LANDEIAL		2.5		Long Axis	Orientati		tered. Pe	meability tes	st under	aken.
-						45		-		
0.8				Shoring /		None				
				Stability: 0		pription):		Term	ination l	Depth:
					•				2.50n	_

JCB 3CX

TP220

Otterpool Phase 2

Folkestone and Hythe District Council

Job No 10011914 Easting (OS mE) 609640.00

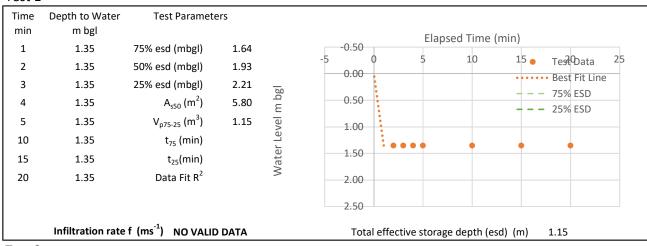
Ground Level (mAOD) type
Northing (OS mN)
137267.45

Start Date 17/08/18 End Date 17/08/18

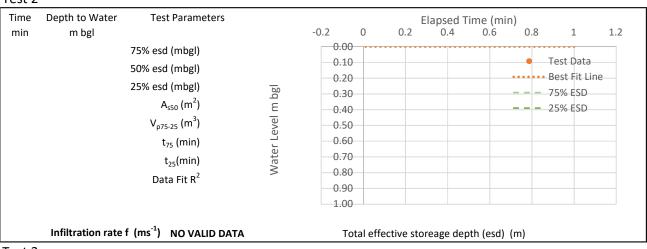
[TRIAL PIT NUMBER 220: GL- 2.50m]

[TRIAL PIT NUMBER 220: SPOIL]

Based on BRE DG 365:2016



Project	Otterpool - Phase 2	Status	LOCATION ID
Project ID	10011914	CHECKED	TP220


Trial Pit Details

	Test 1	Test 2	Test 3	Ground Level	64.02 mAOD	Date Excavated	17/08/2018
Depth	2.50			Coordinates	609640 mE	Date Tested	17/08/2018
Width	2.50			Coordinates	137267.45 mN		
Length	0.80						

Test 1

Test 2

Time Depth to Water Test Parameters				Elapsed T	ime (mir	1)		
min m bgl		-0.2 0	0.2	0.4	0.6	0.8	1	1.2
75% esd (mbgl) 50% esd (mbgl)		0.00				Te	est Data	
25% esd (mbgl)	bgl	0.20				75	est Fit Lir 5% ESD	ne
A _{s50} (m²) V _{p75-25} (m³)	Water Level m bgl	0.40				25	5% ESD	
t_{75} (min) t_{25} (min)	ter Le	0.60						
Data Fit R ²	Wa	0.80						
		0.90 1.00						
Infiltration rate f (ms ⁻¹) NO VALID DATA				oreage de	oth (esd)	(m)		
Carried out by Notes: Test terminal	ted after 2	0 min due to lack of	soakage.		Log	ged	Chec	:ked
Arcadis Consulting (UK) Ltd						IT		SH

Project No. 10011914 Easting (OS mE) 610541.97

Ground Level (mAOD) 88.16 Northing (OS mN) 136217.05

Start Date 21/08/2018 End Date 21/08/2018

Scale **1:25** Sheet 1 of 1

SAMPL	ES		TEST	S	es es	STRATA			Doub		Install/
Depth	Type/ No.	Depth	Type/ No.	Results	Water Strikes	Description		Legend	Depth (Thickness)	Level	Install/ Backfill
- 0.10 - 0.30 - 0.10 - 0.30	B1 ES2	- - 0.10 -	PID	<1ppm		Crop over soft dark brown slightly sandy slightly gravelly organic CLAY. Sand fine to medium. Gravel is subangular to rounded medium coarse of flint. [TOPSOIL]	is	alic alic alic alic alic alic alic alic	(0.30)	į	
- 0.30 - 0.50 - 0.30 - 0.50	B3 ES4	- 0.30 - - -	PID	<1ppm		Soft to firm brown slightly sandy slightly gravelly CLAY. Sand is fine to mediur Gravel is subangular to rounded medium coarse flint. [HEAD DEPOSITS]	1.		0.30	87.86	
- 0.70 - 1.00 - 0.70 - 1.00	B5 ES6	- - - 0.70 -	PID	<1ppm		Firm to stiff dark brown mottled brown slightly sandy CLAY. Sand is fine to coarse. [HYTHE FORMATION]			0.70	87.46	
- 1.10 - 1.30 - 1.10 - 1.30	B7 ES8	- - - 1.10	PID	<1ppm		Firm light grey laminated light brown sandy CLAY with low cobble content. Sar is fine to medium. Cobbles are angular to subangular of weak light grey limestone. [HYTHE FORMATION]	nd .		1.00 -	- 87.16 	
- 1.45 - 1.50	В9	- - - - -				Weak light grey LIMESTONE. [HYTHE FORMATION]			1.45 1.50		
		-							-		
		-									
- - - - - - - -		- - - - - - -							-		
- - - - - - -		- - - - - - -									
-		-							-		
- - - - - -		- - - - - - -								-	
- - - - -		- - - - -							-	-	
PLAN DETAIL	L LS	<u> </u>		l		Remarks					\vdash
<u> </u>		2.4		Long Axis	Orientati	on: Trial pit terminated on bedrock. Groundwater not er	counte	red. Perr	meability tes	t undert	aken.
				Ti .		43					
				Shoring /	Support.	None					
0.6				Stability: 9							
				Groundwa		pription):				ination I	- 1

JCB 3CX

TP221

Otterpool Phase 2

Folkestone and Hythe District Council

Job No 10011914 Easting (OS mE) 610541.97

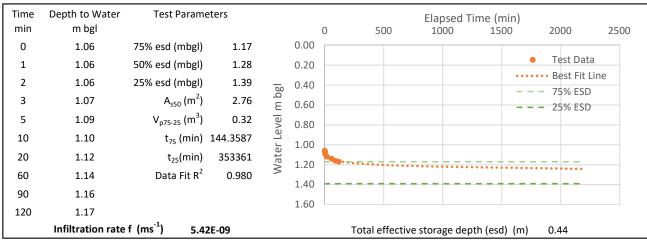
Ground Level (mAOD) 88.16 Northing (OS mN) 136217.05

Start Date 21/08/18 End Date **21/08/18**

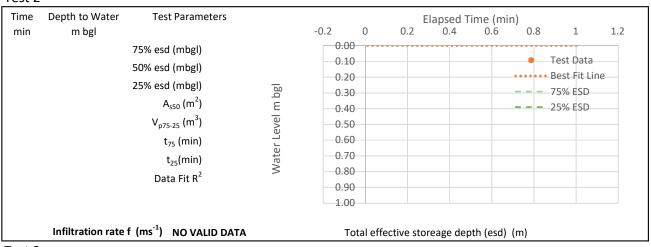
[TRIAL PIT NUMBER 221: GL- 1.50m]

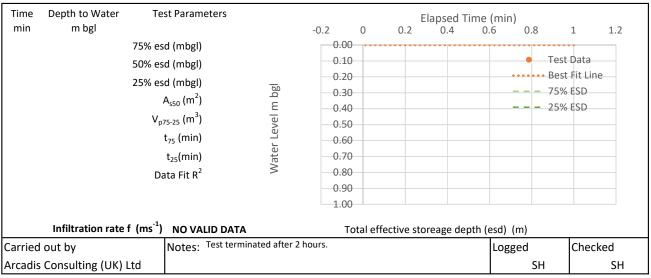
[TRIAL PIT NUMBER 221: SPOIL]

Based on BRE DG 365:2016



Project	Otterpool - Phase 2	Status	LOCATION ID
Project ID	10011914	CHECKED	TP221


Trial Pit Details


	Test 1	Test 2	Test 3	Ground Level	88.16 mAOD	Date Excavated	21/08/2018
Depth	1.50			Coordinates	610541.97 mE	Date Tested	21/08/2018
Width	0.60			Coordinates	136217.05 mN		
Length	2.40						

Test 1

Test 2

Project No. 10011914 Easting (OS mE) 610477.51

Ground Level (mAOD) 85.93 Northing (OS mN) 136008.61

Start Date **22/08/2018** End Date **22/08/2018**

Scale **1:25** Sheet 1 of 1

SAMPLE	ES		TEST	S	er	STRATA	STRATA Depth			Install/
Depth	Type/ No.	Depth	Type/ No.	Results	Water Strikes	Description	Legend	(Thickness)	Level	Backfill
0.00 - 0.10	ES1	0.00	PID	<1ppm		Grass over brown slightly gravelly clayey fine to coarse SAND. Gravel is subangular to subrounded fine to coarse flint. [TOPSOIL]	ale de la companya de	(0.40)	l	
		_				MADE GROUND: Soft light brown sandy gravelly CLAY. Gravel is subangul	MILE	0.40	85.53	
- 0.50 - 0.60 - 0.50 - 0.60	B4 D3	- 0.50 -	PID	<1ppm		subrounded fine to coarse limestone.		(0.20)	05.00	
0.50 - 0.60	ES2					Light grey limestone recovered as light grey clayey sandy GRAVEL with me cobble content. Sand is fine to coarse. Gravel is subangular to subrounded		0.60	85.33	
- 0.75 - 0.80 - 0.75 - 0.80	D6 ES5	0.75	PID	<1ppm		coarse limestone. Cobble is subangular.	inic to	*		
- 0.10	250	- -				[HYTHE FORMATION]		(0.50)	1	
-		_							†	
- 1.10 - 1.20 - 1.10 - 1.20	B7 ES8	1.10	PID	<1ppm		Light grey limestone recovered as firm light grey silty gravelly CLAY with me	dium ×—	1.10	84.83	
1.10 - 1.20	E36	_				cobble content. Gravel is subangular to subrounded fine to coarse limeston Cobble is subangular.	e.	:1	1	= :
-		- -				[HYTHE FORMATION]	×	(0.50)	ļ	
F		-					×		†	
1.60 - 1.65	ES9	- - 1.60	PID	<1ppm			×	1.60	84 33	
- 1.00	200	-				Weak light grey LIMESTONE. \[HYTHE FORMATION]		1.65	84.28	= =
-		- -							1	
E									İ	
		_							-	
-		<u>-</u>							ļ	
-		-							Ī	
[I	
-		-							1	
-		-							†	
E									1	
									1	
-		_ -								
-		_							†	
[Ī	
		_							-	
-		<u>-</u>							†	
-		_							†	
									I	
-		-								
F		-							†	
		_							Ī	
-		-							†	
-		-							†	
E		_							İ	
		_							I	
F		-							‡	
-		-							‡	
E		_							Ī	
<u> </u>		_							†	
<u> </u>		-							‡	
- PLAN DETAIL	L _S	<u> </u>		1		Remarks				
		2.5		Long Axis	Orientati	on: Slight seepage encountered at 1.62mbgl on rock		terminated a	1.65m	due to
-						encountering bedrock at 1.60m. Permeability tes	undertaken.			
0.8				Shoring /		None				
0.0				Stability: I				T-	inctic - '	Donth:
				Groundwa	ater (desc	ription):		lern	nination I	.
									1.65n	n

JCB 3CX

IT

TP222

Otterpool Phase 2

Folkestone and Hythe District Council

Job No 10011914 Easting (OS mE) 610477.51

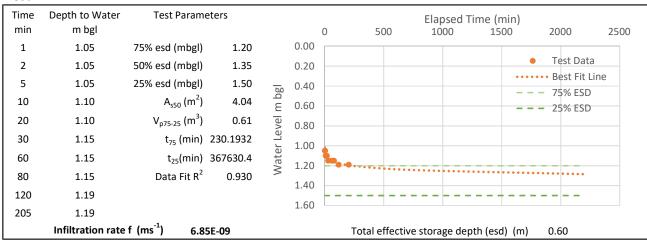
Ground Level (mAOD) 85.93 Northing (OS mN) 136008.61

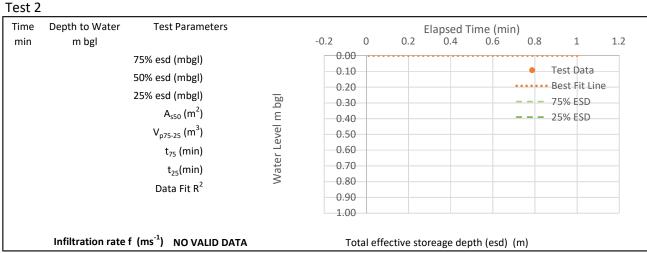
Start Date 22/08/18 End Date **22/08/18**

[TRIAL PIT NUMBER 222: GL- 1.65m]

[TRIAL PIT NUMBER 222: SPOIL]

Equipment Used


Based on BRE DG 365:2016



Project	Otterpool - Phase 2	Status	LOCATION ID
Project ID	10011914	CHECKED	TP222

Trial Pit Details

	Test 1	Test 2	Test 3	Ground Level	85.93 mAOD	Date Excavated	22/08/2018
Depth	1.65			Coordinates	610477.51 mE	Date Tested	22/08/2018
Width	0.80			Coordinates	136008.61 mN		
Length	2.54						

Test 3

Time Depth to Water T	est Parameters			Е	lapsed T	ime (mir	1)		
min m bgl		-0.2	0	0.2	0.4	0.6	0.8	1	1.2
75% e	sd (mbgl)		00						
50% e	sd (mbgl)	0.	10					est Data	
25% e	sd (mbgl)		20				•••• B	est Fit Lir	ne—
	$A_{s50} (m^2)$	<u>0</u> .	30				7!	5% ESD	
	A _{s50} (III)	€ 0.	40				2!	5% ESD	
V	_{p75-25} (m ³)	<u>0</u> .	50						
	t ₇₅ (min)	.0 Agter Level m bgl	60						
	t ₂₅ (min)	ate 0.	70						
С	Pata Fit R ²	≥0.	80						
		-0.	90						
		1.	00						
Infiltration rate f (ms ⁻¹) NO VALID DATA		Total effe	ective sto	reage dep	oth (esd)	(m)		
Carried out by	Notes:					Log	ged	Chec	ked
Arcadis Consulting (UK) Ltd							IT		SH

Project No. 10011914 Easting (OS mE) 611503.02

Ground Level (mAOD) 105.61 Northing (OS mN) 135354.74

Start Date 29/08/2018 End Date 29/08/2018

Scale **1:25** Sheet 1 of 1

SAMPLI	ES		TEST	S	es es	STRATA		Donth		Inctall/
Depth	Type/ No.	Depth	Type/ No.	Results	Water Strikes	Description	Legeno		Level	Install/ Backfill
0.00 - 0.20	ES1	- - - 0.15	PID	<1ppm		Grass on top brownish grey slightly gravelly clayey fine SAND, with frequent rootlets. Gravel is subangular to subrounded fine to coarse flint. [TOPSOIL]	mm	(0.20)		
- 0.20 - 0.25 - 0.20 - 0.25	B2 ES3	- 0.25	PID	<1ppm		Orangish brown sandy CLAY. Sand is fine to coarse. [HEAD DEPOSITS]		0.20	105.41	
-		-				[E. B. B. C. C. C. C. C. C. C. C. C. C. C. C. C.		1		
		-							†	
- 0.60 - 0.70 - 0.60 - 0.70	B4 ES5	- 0.60	PID	<1ppm					†	
[: -	-	IIII = III :
-		-						1	1	
-		-						1	†	= =
-									1	
- - 1.30 - 1.40 - 1.30 - 1.40	B6 ES7	- 1.30	PID	<1ppm					1	
-	20.	-						(2.40)	†	
1.60 - 1.70	B8	- - 1.60	PID	<1ppm		Rare decayed vegeta	ion	1	Ŧ	
1.60 - 1.70	ES9	-				Kale decayed vegeta	ion.	1	1	
-		-						: 4	†	
_		-							1	111111111111
-		-						1	1	
- 2.20 - 2.30	B10	-							†	
-		-							-	
-		-							‡	
-		-					<u> </u>	2.60	103.01	<u></u>
-		-								
-		-							1	
-		-							Ť	
-		-								
-		-							1	
-		-							1	
-		-								
		-							1	
		-							1	
_		-							‡	
-		-							1	
-		-							†	
-									1	
-		-							†	
-		-							†	
-		-							†	
-		-							-	
-		-				<u> </u>			<u> </u>	
PLAN DETAIL	LS	2.7		Long Axis	Orientati	Remarks on: Terminated at scheduled depth. Groundwater not e	ncountered. Pe	ermeability te	st under	taken.
-						140		,		
0.6				Shoring / Stability:		None				
				Groundwa		ription):		Terr	nination	Depth:
									2.60r	n
	-						-			

JCB 3CX

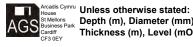
TP223

Otterpool Phase 2

Folkestone and Hythe District Council

Job No 10011914 Easting (OS mE) 611503.02

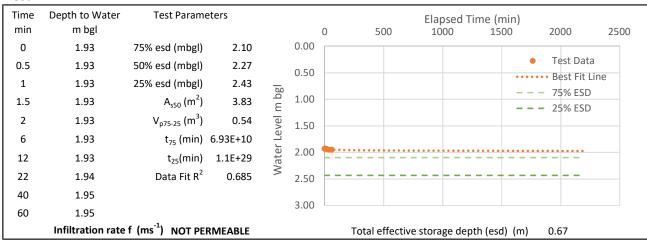
Ground Level (mAOD) 105.61 Northing (OS mN) **135354.74**


Start Date 29/08/18 End Date **29/08/18**

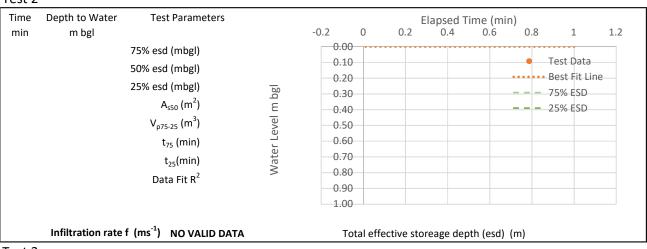
[TRIAL PIT NUMBER 223: GL- 2.60m]

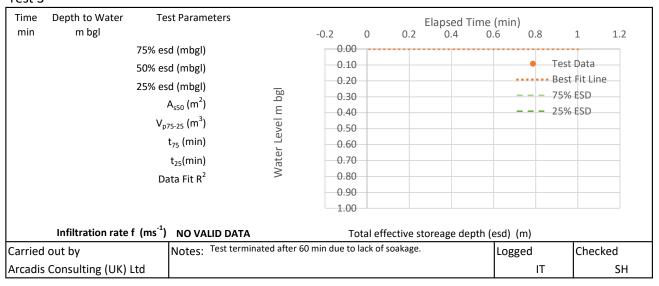
[TRIAL PIT NUMBER 223: SPOIL]

Based on BRE DG 365:2016



Project	Otterpool - Phase 2	Status	LOCATION ID
Project ID	10011914	CHECKED	TP223


Trial Pit Details


	Test 1 Test 2 Test 3	Ground Level	105.61 mAOD	Date Excavated	29/08/2018
Depth	2.60	Coordinates	611503.02 mE	Date Tested	29/08/2018
Width	2.70	Coordinates	135354.74 mN		
Length	0.60				

Test 1

Test 2

Project No. 10011914 Easting (OS mE) 611515.55

Ground Level (mAOD) 96.90 Northing (OS mN) 135949.40

Start Date 29/08/2018 End Date 29/08/2018

Scale **1:25** Sheet 1 of 1

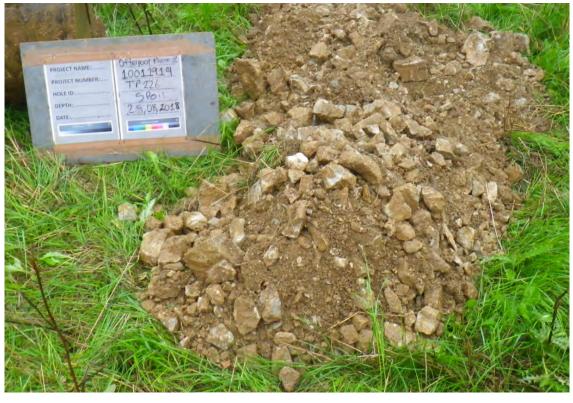
SAMPL	ES		TESTS	3	z s	STRATA Depth Level Instal												
Depth	Type/ No.	Depth	Type/ No.	Results	Water		Description		Legend	Depth (Thickness)		Install/ Backfill						
0.00 - 0.15	ES1	-	INU.			Grass over grey slightly gr	ravelly clayey fine to medium SAND, with frequent ular to subrounded fine to medium of flint.		alk Jak	(0.15)								
- 0.15 - 0.25 - 0.15 - 0.25	B2 ES3	0.15	PID	<1ppm		[TOPSOIL]	ular to subrounded fine to medium of fiint. n sandy gravelly CLAY. Gravel is angular fine to co		216	0.15	96.75							
0.15 - 0.25		0.25	PID	<1ppm		sandstone.	n sandy gravelly CLAY. Gravel is angular fine to co	arse		(0.23)								
-		-				[HEAD DEPOSITS] Weak light grey LIMESTO	NE.			9:≩8	96.52 96.50	≣Щ≣						
-		_				\[HYTHE FORMATION]		/			96.50							
-		-																
Ė																		
_		_								-								
[
-		- -																
Ė		-																
-		_																
-		-																
E		_																
-		-																
-		-																
		-								-								
-		_ -																
-		- -																
Ē																		
-		_									-							
-		-																
[
-		-																
-										-								
-		-																
-		- -																
[
-		_									-							
-		_																
-		-																
-		- -																
_		_								_								
-		-																
-		-																
[
‡		-																
-		-																
-		-																
-		-																
-		-																
		<u> </u>								-	<u> </u>							
PLAN DETAIL	LS						Remarks											
		3.0		Long Axis	orientati	on:	Trial pit refused and terminated on bedrock at 0.4 shallow depth of hole. Groundwater not encounted	um bgl. N red.	No soaka	way test und	iertaken	due to						
						100												
				Shoring /	Support:	None												
0.7				Stability:						_								
				Groundw	ater (desc	cription):					ination [
											0.40n	า						
-										- '								

MT

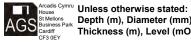
TP226

Otterpool Phase 2

Folkestone and Hythe District Council


Job No 10011914 Easting (OS mE) 611515.55

Ground Level (mAOD) 96.90 Northing (OS mN) 135949.90


Start Date 29/08/18 End Date **29/08/18**

[TRIAL PIT NUMBER 226: GL- 0.4m]

[TRIAL PIT NUMBER 226: SPOIL]

Project No. 10011914 Easting (OS mE) 611629.31

Ground Level (mAOD) 103.80 Northing (OS mN) 135451.68

Start Date 31/08/2018 End Date 31/08/2018

Scale **1:25** Sheet 1 of 1

SAMPL	ES		TEST	S	er		STRATA		Depth		Install/
Depth	Type/ No.	Depth	Type/ No.	Results	Water Strikes		Description	Legend	(Thickness)	Level	Backfill
- 0.00 - 0.10 0.20 - 0.30 - 0.20 - 0.30	B2 ES3	0.00 0.20	PID	<1ppm <1ppm		medium chalk. [TOPSOIL] Very stiff light brown mottll low/medium cobble conter	in slightly gravelly sandy CLAY with frequent roots and parse. Gravel is subangular to subrounded fine to ed orangish brown slightly gravelly sandy CLAY with nt. Sand is fine to coarse. Gravel is angular to	N - N	0.20	ļ	
-		- - - - - - - - - - - -				subrounded fine to coarse sandstone. [HEAD DEPOSITS]	e sandstone. Cobbles are subangular to subrounded o				
		- - - - - - - - - - -							(2.10)		
	B4 ES5	- - - - - - - - - - - -	PID	<1ppm					2.30	101.50	
-		- - - - - - - - - - -									
-		- - - - - - - - - -									
-		- - - - - - - - - - -									
-		- - - - - - - - - -									
		_								†	
PLAN DETAIL	S	60		Long Axis	Orientati	ion:	Remarks Terminated at scheduled depth. Groundwater not end	ountered			
		6.0		Long Axis		106	Tourished at Solidariou appril. Gloundwater flot en	oantolou.			
0.8				Shoring /		None					
	Stability:			Good ater (desc	cription):		Tern	Termination Depth: 2.30m			

JCB 3CX

MT

TP227

Otterpool Phase 2

Folkestone and Hythe District Council

Job No 10011914 Easting (OS mE) 611629.31

Ground Level (mAOD) 103.80 Northing (OS mN) 135451.68

Start Date 31/08/18 End Date **31/08/18**

[TRIAL PIT NUMBER 227: GL- 2.30m]

[TRIAL PIT NUMBER 227: SPOIL]

Equipment Used

ARCADIS Trial Pit Log

Project
Otterpool Phase 2
Client
Folkestone and Hythe District Council

Project No. 10011914 Easting (OS mE) 611420.91

Ground Level (mAOD) 100.16 Northing (OS mN) 135791.53

Start Date 29/08/2018 End Date 29/08/2018

Scale **1:25** Sheet 1 of 1

SAMPLES Depth Type/No.			TEST	S	es er		STRATA		- Depth		Install/
Depth		Depth	Type/ No.	Results	Water Strikes		Description	Legend	(Thickness)	Level	Backfill
0.00 - 0.20 - - - 0.20 - 0.40	ES1	- 0.20	PID	<1ppm		Soft to firm grass on top b 1mm rootlets. Sand is fine [TOPSOIL]	rownish grey and orange sandy CLAY, with frequent to coarse.		(0.20)	00.06	
- 0.20 - 0.40 - 0.20 - 0.40	ES3	- 0.40	PID	<1ppm		cobble content. Cobbles a	loured gravelly silty fine to coarse SAND, with low re subangular to subrounded sandstone. Gravel is fine to coarse of weathered sandstone and flint. Rare		(0.30)	ļ	
- - 0.50 - 0.70 - 0.50 - 0.70	B4 ES5	- - - -				MADE GROUND: Recove COBBLES, with medium b	ered as light grey and reddish orange sandy gravelly soulder content. Boulders are angular to subangular		0.50	99.66	
-		0.70	PID	<1ppm		subangular of brick and co	es are angular to subangular brick. Gravel is angular to oncrete. Sand is fine to coarse. gish brown mottled orangish brown and dark brown silty	/ <u>×</u> ×	0.65	1	
- 0.90 - 0.90 	B6 ES7 B8 ES9	- 0.90 - - - 1.10	PID PID	<1ppm			and dark orangish brown sandy gravelly CLAY, with I bioturbation. Gravel is subangular to subrounded of	×	1.00 - (0.15)	99.16	
- 1.15 - 1.30 - -	B10	1.30	PID	<1ppm		ironstone and flint. Sand is [HEAD DEPOSITS] Weathered SANDSTONE	s fine to coarse. (Possible Relic Topsoil). recovered as slightly silty sandy GRAVEL, with high	<u> </u>	1.15	t	
- - -		-					ne to coarse. Gravel is angular to subangular fine to sare angular to subangular sandstone.		(0.55)	I	
-		- - - -							- 1.70	98.46	
-		- - -								† 	
-		- - - -								T I I	
<u>-</u>		-								† 	
[- -											
		-									
_		- - -							-	 - -	
- - -		- - - -								İ 	
<u>-</u>		- - - -									
_		-								<u> </u> 	
-		- - -									
- - -		- - -									
-		- - -									
<u>-</u>		-								† 	
<u> </u>	<u>-</u> -							-	-		
PLAN DETAIL	S			Lon- A.	Oriont-"	ion	Remarks Trial pit refused and terminated on bedrock at 1.70m bg	l Grounder	ater not one	nunteron	
		3.0		Long Axis	onenial	40		Croundw	ator Hot GIIO	- an nei et	•
0.7				Shoring /		None					
				Groundwa		cription):			Term	ination l	-

JCB 3CX

TP228

Otterpool Phase 2

Folkestone and Hythe District Council

Job No **10011914** Easting (OS mE) 611420.91

Ground Level (mAOD) 100.16 Northing (OS mN) **135791.53**

Start Date 29/08/18 End Date **29/08/18**

[TRIAL PIT NUMBER 228: GL- 1.70m]

[TRIAL PIT NUMBER 228: SPOIL]

ARCADIS Dynamic Sample Log

Project
Otterpool Phase 2
Client

Folkestone and Hythe District Council

Project No. 10011914 Easting (OS mE) 611319.31

Ground Level (mAOD) 102.85 Northing (OS mN) 135672.56

Start Date 30/08/2018 End Date 30/08/2018 Scale **1:50** Sheet 1 of 1

SAM	MPLES				ESTS	es es					STRA	ГА				Depth		Inc	stall/
Dept		Type/ No.	Depth	Type/ No.	Results	Water Strikes					Description				Legend	(Thickness)	Level		ckfill
0.00 - 0	1.20	D2 ES1	0.00 0.00	PID PID	<1ppm <1ppm						sandy CLA lint and cha		fine to coarse	e. Gravel is	alt.	(0.20) 0.20	102.65	Ą	۶.۵
_ 0.20 - 0 _ 0.20 - 0	0.40 0.40	D4 ES3	0.20 0.20	PID PID	<1ppm <1ppm		\[TOPSOII	L]							<u> </u>	(0.20) 0.40	102.45		9.5
- 0.40 - 0 - 0.40 - 0	.60	D6 ES5	0.40 0.40	PID PID	<1ppm <1ppm		/IHEAD DI	rown claye EPOSITS]	-						 		†	· d	
							Soft orang	ge brown v EPOSITS]	ery sand	dy CLAY.	Sand is fine	e to coarse	9 .			(0.60)			
1.00 - 2	2.00	В7					Soft fissu	red orangi	sh brown	sandy s	ilty CLAY. S	and is fine	to coarse. Fi	ssures are	×	1.00	101.85	H	1
- 1.20 - 1	.30	ES8	1.20	PID	<1ppm		closely sp [HEAD DI	aced.							×_×_				$\exists :$
-							[000,							×_×_		‡		7
1.70 - 1	.80	ES9	1.70	PID	<1ppm										X_ X_ X_ X_ X_ X_ X_ X_ X_ X_ X_ X_ X_ X		‡		1
2.00 - 3		B10													×	(1.66)	‡		_
- 2.20 - 2		ES11	2.20	PID	<1ppm											1	T		\exists
2.20 - 2	30	ESII	2.20		20(10)kPa										×		-		70
-				10.40	00/40/15										×		ł		7
2.70 - 2	2.95	ES12	2.64 2.70	HV(2) PID	22(10)kPa <1ppm					d light bro	wn very sa	indy CLAY.	Sand is fine	to coarse.	×	2.66 (0.32)	100.19		1
_							[HEAD DI	EPOSITS]					In	on staining	иоз эт	2.98	99.87		<u> </u>
- 3.20 - 3	3.50	D13	3.20	PID	<1ppm								n sandy grav	elly CLAY		(0.52)	‡		+:
ļ.							Cobbles a	are subang	ular to s	ubrounde	guiar to sub ed sandstor	angular fir 1e.	ne to coarse s	anusione.		(0.02)	‡		$\exists : \exists$
F							[HYTHE I	FORMATIC	DN]						1	3.50	99.35		
F																	1		
E																	+		
ŀ																	ł		
Ŀ																	‡		
-																			
-																			
-																	†		
-																	†		
F																	‡		
E																	-		
_																			
-																			
-																			
-																	†		
-																	‡		
F																	‡		
F																	Ī		
E																	I		
Ŀ																	ł		
-																	‡		
F																-	†		
ļ																	‡		
ļ.																	‡		
-																	‡		
F																	†		
E																	Ŧ		
E																	1		
F																	ŧ		
-																	‡		
-																	‡		
	DRIII	ING T	ECHNIQU	lF.		\/\ΔTE	R OBSERVA	TIONS			Ц	OI E/CASI	NG DIAMETE	R I		BACKF			_
From	To	1 5411.	Techn		Date/Time	Strike At	Time Elapsed	Rise To	Casing	Sealed	Hole Dla.	Depth	Casing Dia.	Depth	Тор	Base	Bac	kfill	_
0.00 1.20	1.20		Inspecti Window S	on Pit							116	3.50			0.00 0.50	0.50 1.00	Cond	onite	
20				,p.10											1.00	3.50	Sai	nd	

Remarks

Exploratory hole terminated due to refusal. Groundwater not encountered.

Termination Depth: 3.50m

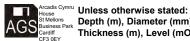
Otterpool Phase 2

Job No 10011914 Ground Level (mAOD) 102.85 Northing (OS mN) 135672.56

30/08/2018 End Date 30/08/2018

WS201

Folkestone and Hythe District Council


Easting (OS mE) 611319.308

PROJECT NAME: OTTERPOOL-PHASE 2 . **ARCADIS** PROJECT ID: 10011914 BOREHOLE ID: WS201 CLIENT: HOMES ENGLAND 30/08/2018 1.00 2.00 DEPTH (m): TO:

[WINDOWLESS SAMPLE NUMBER 201: 1.00m-2.00m]

WINDOWLESS SAMPLE NUMBER 201: 1.00m-2.00m SPLIT]

Otterpool Phase 2

Folkestone and Hythe District Council

Job No 10011914 Easting (OS mE)

611319.308

Ground Level (mAOD) 102.85 Northing (OS mN) 135672.56

30/08/2018 End Date 30/08/2018

WS201

[WINDOWLESS SAMPLE NUMBER 201: 2.00m-3.00m]

[WINDOWLESS SAMPLE NUMBER 201: 2.00m-3.00m SPLIT]

ARCADIS Dynamic Sample Log

Project
Otterpool Phase 2
Client

Folkestone and Hythe District Council

Project No. 10011914 Easting (OS mE) 611295.76

Ground Level (mAOD) 106.43
Northing (OS mN) 135297.81

Start Date 30/08/2018 End Date 30/08/2018

Scale 1:50 Sheet 1 of 1

		,				_											_	_	=
SAMP	LES		. т	ESTS		(es					STRAT	ΓΑ			_	Depth	l	Ins	stall/
Depth	Type/	Depth	Type/		Results	Water Strikes					escription				Legend	(Thickness)	Level		ckfill
0.00 - 0.15	No. ES1	0.00	No. PID	<1ppm		- ",	Cross ov	or coff dar	k brown i			condy CL /	Y. Sand is fin	o to	312	(0.45)		-	1
0.15 - 1.00		0.00	110	Тррііі							unded fine		AT. Saliu is illi	e io	- "	(8:15)	106.28	4	<i>i</i> .3
-							\[TOPSOII	-]	•						/		İ	d	٧.
0.50 - 0.60	ES2	0.50	PID	<1ppm			Soft light Sand is fi			owish bro	wn mottled	orange br	own very san	dy CLAY.		(0.85)	ł	ā	
ļ							[HEAD DI	EPOSITS	36. 							(0.65)	1		1/2
-							-										‡		
1.00 - 1.10		1.00	PID	<1ppm			Soft multi	coloured s	sliahtly ar	avelly fin	e SAND wit	h bands o	f clay 1-3mm	thick.	- X	1.00	105.43		+:
1.00 - 2.00	B5						Gravel is	angular to	subangi	ular fine to	medium s	andstone.	,		×××		I		∄:
ļ							[HEAD DI	EPOSITS:							×. ×. >		ļ		\dashv
1.50 - 1.60	ES6	1.50	PID	<1ppm											×××	(1.00)	‡]
-															××		ł		+
F															× × ×		Ī		\exists
- 2.00 - 2.10 - 2.10 - 2.35		2.00	PID	<1ppm			Brown mo	ttled orar	ige browr	and red	brown sligi	ntly gravel	y clayey fine	SAND.		2.00	104.43		40
t										ded fine	to medium	ironstone.			-	(0.35)	l	٠.	1:
2.35 - 2.50		2.35	PID	<1ppm			[HEAD DI			andv to v	erv sandv (CLAY. Sar	nd is fine to co	arse.	×	2.35	104.08		4.
2.50 - 3.00	B10						[HEAD D			,	,, -				×_×_		ţ		4:
-															×	(0.65)	İ]
	F044	0.00	DID												×_×_	0.00	100.40		-
3.00 - 3.20 3.15 - 3.30		3.00	PID	<1ppm							nd orange	brown slig	htly silty sligh	tly sandy	× × × × × × × × × × × × × × × × × × ×	3.00	103.43		\exists
F							gravelly C			dstone.					X	(0.40)	†		4
3.40 - 3.70	ES12	3.40	PID	<1ppm			Multicolou			coarse S/	AND.				· · · · · ·	3.40	103.03		\exists
3.50 - 4.20	D13						[HEAD D			2							+		7.
ļ.															-	(0.80)	1		+:
L																` ′	ļ]
	F044	4.00	515	l.,											_				⊣٠.
4.20 - 4.30	ES14	4.20	PID	<1ppm			Weak ligh			SANDST	ONE.				<u></u>	4.20 4.30	102.23 102.13		∄.
-							[HYTHE I			our oron	gich brown	brownich	grey, reddish	brown	/	(0.20) 4.50	101.93		40
-							dark grey	and light	grey san	dy CLAY.	Sand is fin	e to coars	i grey, reduisii e.	DIOWII,	Λ		101.00	٠.	\exists
F							\[HYTHE F	ORMĂTI							/	(0.50)	Ī		7.
_							No recove	ery.								5.00	101.43		<u>∃::</u>
t																	1		
-																	ł		
ļ.																	‡		
t																	İ		
-																	ł		
_																	‡		
-																	İ		
-																	-		
ļ.																	‡		
-																	İ		
-																	+		
_																	‡		
E																	ł		
F																	Ī		
																	‡		
-																	ł		
ļ																	1		
Ł																	Ĺ		
F						1											Ţ		
ţ						1											‡		
-						1											†		
F						1											Ţ		
ţ						1											1		
F						1											+		
F						1											Ţ		
t						1											İ		
F						1											+		
F						1											‡		
t																	t		
-																	ł		
																	<u> </u>		
DF	RILLING T	 TECHNIQU	JE	\vdash		WATER	VATER OBSERVATIONS HOLE/CASING DIAMETER						BACKF	L ILL					
From	То	Techr			Date/Time	Strike At					Тор	Base	Bacl	kfill					
0.00	1.20	Inspect	ion Pit						J		116	5.00	<u> </u>	•	0.00	0.50	Conc	rete	_
1.20	5.00	Window	Sample												0.50 1.00	1.00 5.00	Bento Sar	nite nd	
Pomorko																			

Remarks

Terminated at scheduled depth. Groundwater not encountered.

Termination Depth: 5.00m

Arcadis Consulting (UK) Ltd

Otterpool Phase 2

Folkestone and Hythe District Council

Job No

10011914 Easting (OS mE) 611295.761 Ground Level (mAOD) 106.43 Northing (OS mN) 135297.812

31/08/2018 End Date 31/08/2018

WS202

WINDOWLESS SAMPLE NUMBER 202: 1.00m-2.00m]

[WINDOWLESS SAMPLE NUMBER 202: 1.00m-2.00m SPLIT]

Otterpool Phase 2

Job No 10011914 Easting (OS mE) 611295.761 Ground Level (mAOD) 106.43 Northing (OS mN) 135297.812

31/08/2018 End Date 31/08/2018

WS202

Folkestone and Hythe District Council

WINDOWLESS SAMPLE NUMBER 202: 2.00m-3.00m]

[WINDOWLESS SAMPLE NUMBER 202: 2.00m-3.00m SPLIT]

Otterpool Phase 2

Job No 10011914 Easting (OS mE)

611295.761

Ground Level (mAOD) 106.43 Northing (OS mN) 135297.812

31/08/2018 End Date 31/08/2018

WS202

Folkestone and Hythe District Council

WINDOWLESS SAMPLE NUMBER 202: 3.00m-4.00m]

WINDOWLESS SAMPLE NUMBER 202: 3.00m-4.00m SPLIT]

Equipment Used

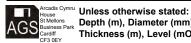
Folkestone and Hythe District Council

ARCADIS Windowless Sample Photography Sheet

Otterpool Phase 2

Job No 10011914 Easting (OS mE) 611295.761 Ground Level (mAOD) 106.43 Northing (OS mN) 135297.812

31/08/2018 End Date 31/08/2018


WS202

OTTERPOOL-PHASE 2 PROJECT NAME: OTTERPOO PROJECT ID: 10011914 **ARCADIS** BOREHOLE ID: WS202 CLIENT: HOMES ENGLAND 31/08/18 то: 5.00 DEPTH (m):

WINDOWLESS SAMPLE NUMBER 202: 4.00m-5.00m]

WINDOWLESS SAMPLE NUMBER 202: 4.00m-5.00m SPLIT]

Equipment Used

ARCADIS Dynamic Sample Log

Project
Otterpool Phase 2
Client

Folkestone and Hythe District Council

Project No. 10011914 Easting (OS mE) 611266.05

Ground Level (mAOD) 106.27 Northing (OS mN) 135243.45

Start Date 30/08/2018 End Date 30/08/2018 Scale **1:50** Sheet 1 of 1

			ESTS	ar es					STRA	TA				Dth		Inc	toll/		
Depti	"	Type/ No.	Depth	Type/ No.	Results	Water Strikes					Description				Legend	Depth (Thickness)	Level	Bad	tall/ ckfill
0.00 - 0		ES1 B3	0.00	PID	<1ppm		Dark brow		clayey fir	ne to coa	rse SAND.				ale ale		-	4	۶.۵
- 0.20	.00	50					[.0.00.	-1							ALC:	(0.50)	1	نضا	. Q.
- 0.50 - 0. - 0.50 - 1		ES2 B4	0.50	PID	<1ppm		Yellowish	brown fine	to coars	se SAND					SILC	0.50	105.77	d	
0.50 - 1.	.00	54					[HEAD D	EPOSITS]								(0.50)	ł		
- - 1.00 - 1	20	ES5	1.00	PID	<1nnm											1.00 -	105.27		
1.10 - 1	.40	D11	1.00	PID	<1ppm			wish browr EPOSITS]		indy CLA	Y. Sand is f	fine to coar	se.			1	T105.27		\Box
F.,		500	4.40	DID.			[ILEAD D	EFOSITSJ								(0.40)]::
- 1.40 - 1. - 1.50 - 1.		ES6 D12	1.40	PID	<1ppm					ey fine to	coarse SA	ND.			100	1.40	104.87		$+\cdot$
F							[nead b	EPOSITS]								(0.40)	Ī		7.
- 1.80 - 2 - 1.90 - 2	.00	ES7 D13	1.80	PID	<1ppm			sh brown s		andy CLA	AY.					1.80 (0.20) 2.00	104.47		∃ ∷
-							No recove	EPOSITS] ery.								2.00 - (0.20)	104.27		-
- 2.20 - 2 2.35 - 2		ES8 ES9	2.20 2.35	PID PID	<1ppm <1ppm		Orangish	brown mot					CLAY with fro			(0.20) 2.20 (0.15) 2.35	104.07 103.92]
2.50 - 2		D14	2.33	510	Гррпп			Sand is fine EPOSITS]	e to coar	se. Grave	el is suban	gular to sul	brounded fine	flint.	× ×	2.45	103.82		$\exists : \exists$
-							Soft brow	n mottled o					ravelly CLAY.	Sand is	$\overline{\times}$	(0.55)	ļ		7
2.80 - 3	.00	ES10	2.80	PID	<1ppm			arse. Grav EPOSITS]		angular to	o subround	ed fine flin	t.		$\overline{}$	(0.55)	İ		_
<u> </u>							Soft yello	wish browr	n sandy (CLAY. Sa	nd is fine to	o coarse.			X	3.00 -	103.27		<u> Tar</u>
E							/[HEAD D	EPOSITS]							'		ł		
Ł																	1		
F																	-		
F																	I		
F																-	-		
F																	1		
-																	ļ		
-																	ţ		
-																	l		
Ł																	Ĺ		
F																	F		
F																	Ī		
-																	‡		
-																	ļ		
-																	ļ		
																-	†		
_																	ł		
-																	ł		
F																	Ī		
-																	1		
Ė																	1		
-																	‡		
-																	1		
t																	t		
Ł																	ł		
F																	+		
F																	Ī		
ļ.																	‡		
Ļ																	‡		
ţ																	†		
t																	1		
F																-	+		
F																	I		
F																	Ī		
F																	ţ		
ļ.																	‡		
L																	1		
							1												
			ECHNIQU		B . =		R OBSERVA		0- : 1	0. 1 :			NG DIAMETE		_ 1	BACKFI		.er	_
From 0.00	To 1.20		Techn		Date/Time	Strike At	Time Elapsed	Rise To	Casing	Sealed	Hole Dla. 116	Depth 3.00	Casing Dia.	Depth	Top 0.00	0.50	Back		\dashv
1.20	3.00		Window												0.50 1.00	1.00 3.00	Bento Sar	nite	
														50	Odi	_			

Remarks

Exploratory hole terminated due to refusal. Groundwater not encountered.

Termination Depth: 3.00m

Otterpool Phase 2

10011914 Easting (OS mE) 611266.046 Ground Level (mAOD) 106.27 Northing (OS mN) 135243.448

30/08/2018 End Date 30/08/2018

WS203

Folkestone and Hythe District Council

WINDOWLESS SAMPLE NUMBER 203: 1.00m-2.00m]

[WINDOWLESS SAMPLE NUMBER 203: 1.00m-2.00m SPLIT]

Otterpool Phase 2

10011914 Easting (OS mE) 611266.046 Ground Level (mAOD) 106.27 Northing (OS mN) 135243.448

30/08/2018 End Date 30/08/2018

WS203

Folkestone and Hythe District Council

[WINDOWLESS SAMPLE NUMBER 203: 2.00m-3.00m]

WINDOWLESS SAMPLE NUMBER 203: 2.00m-3.00m SPLIT]

